
PersonalTouch: Improving Touchscreen Usability
by Personalizing Accessibility Settings

based on Individual User’s Touchscreen Interaction
Yi-Hao Peng

National Taiwan University
b03902097@ntu.edu.tw

Muh-Tarng Lin
National Taiwan University
tommy60703@gmail.com

Yi Chen
National Taiwan University
r07922059@ntu.edu.tw

TzuChuan Chen
National Taiwan University
aldrich1221@gmail.com

Pin Sung Ku
National Taiwan University
scott201222@gmail.com

Paul Taele
Texas A&M University
ptaele@cse.tamu.edu

Chin Guan Lim
National Taiwan University
sky010flyer@gmail.com

Mike Y. Chen
National Taiwan University
mikechen@csie.ntu.edu.tw

ABSTRACT
Modern touchscreen devices have recently introduced cus-
tomizable touchscreen settings to improve accessibility for
users with motor impairments. For example, iOS 10 intro-
duced the following four TouchAccommodation settings [10]:
1) Hold Duration, 2) Ignore Repeat, 3) Tap Assistance, and
4) Tap Assistance Gesture Delay. These four independent
settings lead to a total of more than 1 million possible con-
figurations, making it impractical to manually determine
the optimal settings. We present PersonalTouch, which col-
lects and analyzes touchscreen gestures performed by indi-
vidual users, and recommends personalized, optimal touch-
screen accessibility settings. Results from our user study
show that PersonalTouch significantly improves touch input
success rate for users with motor impairments (20.2%, N=12,
p=.00054) and for users without motor impairments (1.28%,
N=12, p=.032).

CCS CONCEPTS
•Human-centered computing→ Accessibility design and
evaluation methods; Human computer interaction (HCI).

KEYWORDS
Accessibility; Motor Impairment; Personalization; Touch-
screen Interaction; Gesture Recognizer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CHI 2019, May 4–9, 2019, Glasgow, Scotland UK
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5970-2/19/05. . . $15.00
https://doi.org/10.1145/3290605.3300913

Figure 1: (a) PersonalTouch first collects touchscreen ges-
tures, and then recommends personalized, optimal accessi-
bility settings. (b) PersonalTouch displays the iOS accessibil-
ity settings for a 72-year old user with mild tremors, which
improved the user’s touchscreen input success rate from
48.4% to 66.3%.

ACM Reference Format:
Yi-Hao Peng, Muh-Tarng Lin, Yi Chen, TzuChuan Chen, Pin Sung
Ku, Paul Taele, Chin Guan Lim, and Mike Y. Chen. 2019. Personal-
Touch: Improving Touchscreen Usability by Personalizing Accessi-
bility Settings based on Individual User’s Touchscreen Interaction.
In CHI Conference on Human Factors in Computing Systems Proceed-
ings (CHI 2019), May 4–9, 2019, Glasgow, Scotland UK. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3290605.3300913

https://doi.org/10.1145/3290605.3300913
https://doi.org/10.1145/3290605.3300913

1 INTRODUCTION
Touchscreen devices have gesture recognizers that are con-
stantly interpreting users’ touches as one of the supported
gestures, such as tap, scroll, swipe, long press, rotate, and pinch.
These gesture recognizers have default settings that are opti-
mized for users with good dexterity; however, they perform
poorly for users with motor impairment in controlled set-
tings [14, 17, 22, 24, 31, 39, 41, 44] and in the wild [2, 32, 34].
To improve touchscreen accessibility, iOS and Android have
recently introduced accessibility settings to allow the cus-
tomization of these gesture recognizers. For example, Apple
introduced Touch Accommodation settings in iOS 10 [10]:
1) Hold Duration, 2) Ignore Repeat, 3) Tap Assistance, and
4) Tap Assistance Gesture Delay.

Past research has shown that accessibility settings are
difficult to discover, access, and understand [2, 41]. Touch-
screen settings are especially difficult for users to try and
evaluate, because users must test each setting across all
types of gestures and each type of gesture is affected dif-
ferently. Furthermore, gesture recognizer settings require
one or more timing thresholds to be configured correctly.
Using iOS Touch Accommodations as an example, these four
independent touchscreen settings have a total of 1.15 million
possible configurations, which makes it impossible for users
to configure optimally.

This paper presents PersonalTouch, which improves touch-
screen accessibility by first collecting and analyzing individ-
ual users’ touchscreen input, and then recommending per-
sonalized, optimal accessibility settings. Our current system
first utilizes an iOS app to collect touch input, then analyzes
how well various types of the user’s gestures are recognized
using all 1.15 million configurations, and finally recommends
the optimal settings for iOS Touch Accommodations.

To evaluate our approach, we collected data from 12 partic-
ipants with motor impairments, including spinal cord injury,
cerebral palsy, Parkinson’s disease, andmild tremors.We also
collected data from 12 participants without motor impair-
ments. Study results show that PersonalTouch significantly
improved touch input success rate for all users with motor
impairments, with an average improvement of 20.2% (N=12,
p=.00054 < .05). PersonalTouch also improved the input suc-
cess rate for 50% of the users without motor impairments,
with an average improvement of 1.28% (N=12, p=.032 < .05).

2 RELATEDWORK
The most relevant prior work have: 1) improved keyboard
and mouse accuracy by optimizing accessibility settings, and
2) improved touchscreen accessibility for people with motor
impairments through novel gestures, interfaces, and recog-
nizer algorithms.

Keyboard and Mouse Accessibility Settings
Prior work on optimizing accessibility settings provided by
operating systems has focused on improving the accessibility
of keyboard and mouse. Dynamic Keyboard [40] proposed
an approach to analyze a user’s keyboard use and optimize
keyboard accessibility settings, including Key Repeat Delay,
Key Repeat Rate, and Bounce Keys. Koester et al. [26–28]
developed software agents that processed a user’s keyboard
and mouse input, and then optimized the corresponding
accessibility settings including Double-click Time, Double-
click Distance and Pointer Speed for mouse; and Key Repeat
Delay, Key Repeat Rate, and Sticky Keys for keyboard. Our
work is the first investigation into optimizing touchscreen
accessibility settings.

Touchscreen Accessibility
Extensive research has been conducted to understand the
difficulties users with motor impairments encounter when
using touchscreens [2, 14, 17, 22, 24, 31, 32, 34, 39, 41, 44].
Various approaches have been proposed to improve touch-
screen accessibility, including novel gestures and novel user
interfaces. For novel gestures, swabbing has been shown to
improve target selection for users with hand tremors [30, 43].
For novel user interfaces, a two-stage selection interface [46]
and a customized adaptive keyboard layout [38] have been
proposed. These approaches require users to learn new ges-
tures and new interfaces, whereas our approach does not
require users to change their behavior.

Algorithms have also been developed for users with motor
impairments to improve tapping recognition and to also im-
prove the prediction of the (x,y) coordinates of a tap, without
requiring users to modify their existing behavior. Montague
et al. [32] trained user- and session-specific tapping and swip-
ing gesture models. Mott et al. [33] developed a template
matching-based algorithm that is robust to multiple concur-
rent touches. Our work is complementary to advancements
in gesture recognizer algorithms in that PersonalTouch evalu-
ates all possible accessibility configurations and recommends
the optimal settings. Furthermore, in addition to tapping per-
formance, we evaluate how these configurations perform for
all types of touch gestures.

3 SYSTEM DESIGN AND IMPLEMENTATION
In order to recommend personalized, optimal settings, our
system needs to: 1) support the collection of touch data for
all types of touchscreen gestures, and 2) evaluate all possible
touchscreen accessibility configurations.

Touch Input Tasks
Our tasks covered all six types of the standard touchscreen
gestures supported by Android and iOS [4, 18]: tap, long

Figure 2: Touch input tasks for collecting individual touch data. The tasks are designed to collect each of the 6 standard gestures
supported by Android and iOS: (a) tap and long press, (b) swipe, (c) horizontal scroll, (d) vertical scroll, (e) pinch, and (f) rotate.

press, swipe, scroll, pinch, and rotate. These gestures can
be categorized as: 1) discrete gestures: tap, long press, and
swipe, which are recognized after users complete the entire
gesture; and 2) continuous gestures: scroll, pinch, and rotate,
which are continuously tracked by the system with the user
interface continuously updated throughout the gesture. We
designed the gesture task user interfaces based on designs
from [17, 22, 36], and the application user interfaces based
on designs from the stock iOS and Android apps [3, 5, 19, 20].
Our app is developed using Swift 4.1 and Xcode 9.3, using
iOS UIkit [9] and ResearchKit [6].

Tap. This gesture is the most frequently used touch ges-
ture. For this input interface design, we adapted the tap task
from [22] by dividing the screen into a 5 × 5 grid, where
the center of each grid contained a blue square button, and
showing one target per trial (Figure 2.a). The target sizes are
44pt and 80pt for the minimum sizes of buttons and icons,
respectively, as specified in Apple’s iOS Human Interface
Guidelines [8].

Long Press. This gesture is used by applications for activat-
ing common various tasks, such as copy-pasting text and
repositioning mobile app icons. For this input task design,

we chose the same target size as the tap task (shown in Fig-
ure 2.a), but instead divided the screen into nine regions to
reduce the number of trials.

Swipe. This gesture involves performing directional gestures
that satisfies specified thresholds [7]. The requirements and
discreteness for executing the gesture makes it infrequently
used in a non-gaming app’s functionality, due to its discon-
tinuous feedback. On the other hand, this touch gesture is
widely adopted in popular gaming app such as Temple Run
andMinion Rush, where users can control their in-game char-
acter’s direction through swiping actions. For this input task
design, we adapt the swipe tasks conducted in [22] and sim-
plified it into a whole-screen swipe task in four directions,
matching the directions supported by iOS and Android’s
built-in gesture recognizers (shown in Figure 2.b).

Scroll. This gesture is also known as pan. Similar to swipe,
this gesture is a directional gesture, but is continuous rather
than discrete. This gesture is widely used in any scrollable
views, and in place of swipe for most non-gaming apps. Un-
like swipe, scroll does not prompt users to perform accurate
direction gesturing at a minimum speed, but instead moves
the target interface at the speed of the user’s corresponding
touch movements. For this input task design, we adapted
the scroll tasks from prior works [12, 35, 42] and from the

scrolling interaction for navigating the iPad tablet’s Apple
App store layout [3]. We display five numbered blocks on the
screen at a time, with three blocks displayed in the middle
and the remaining two at the borders (shown in Figure 2.c
and 2.d). The user’s goal is to scroll through the target num-
bered blocks that are prompted at the top-left portion of the
screen into the screen view. We focus on two scrolling direc-
tions for the tasks: vertical and horizontal. We also focus on
two distinct target distances from the screen’s border that
could be easily scrolled into the screen view from our original
design: near-distance and far-distance. Users are prompted
in the task to make a best single attempt at scrolling through
the target block into the screen view.

Pinch. This gesture is a multi-touch gesture for zooming,
commonly used in apps such as Google Maps [19] and Apple
Photos [5]. For this input task design, we adapted the pinch
tasks from prior works [13, 15, 25]. Our pinch task consists
of display a rectangle of size proportional to one-ninth of the
screen’s dimensions onto the user’s view. Users are prompted
to pinch-to-resize the displayed rectangle to a dotted-line
target in a single attempt (shown in Figure 2.e). We selected
four different sizes for the users to pinch-to-resize relative
to the original target’s size: double, quadruple, one-half, and
one-quarter.

Rotate. This gesture is a multi-touch gesture that is used in
apps such as Apple Photos [5] and Google Maps [19]. For this
input task design, we modified the rotation tasks from [19,
23, 45]. Users are shown an on-screen compass with a default
turn direction during the rotation task, and can manipulate
the compass by rotating the whole view. The goal of this task
is to rotate the compass to the top-right direction, which
is marked with a dotted line (shown in Figure 2.f). Possible
angles between the default and top-right direction are 30
degrees and 60 degrees, along with two possible rotation
directions of clockwise and counterclockwise.

Recommending Personalized Settings
As users perform the touch tasks, our app synchronizes the
touch input data to our cloud-based backend for processing.
Our recommendation engine performs the following three
phases of computation:

(1) Settings Simulation: for all possible combinations of
accessibility settings, compute how each combination
of settings modify the raw touch input data.

(2) Input Success Rate Calculation: for each modified
touch input data from 1), compute the gesture recog-
nition success rate, so that we have the success rate
for each of the 6 types of gestures.

(3) Settings Recommendation: compute the most opti-
mal combination of settings by weighting the gesture

recogniztion success rates with the expected gesture
ratios.

Settings Simulation. Our current system focuses on iOS’ Touch
Accommodations accessibility settings introduced in iOS
10 [10]. There are four such configurable settings, described
below, with all time-related settings being configurable from
0.10s to 4.00s in increments of 0.05s.
(1) Hold duration: sets the device to respond to touches

only after the user holds their finger on the screen for
the specified period of time.

(2) Ignore repeat: sets the period of time that the device
will treat several touches as one. This should be turned
on when users have trouble touching the screen just
once.

(3) Tap assistance: sets the device to respond to the first
or the last place a user touches. If users touch the
screen at the place they want, but their fingers drag to
a different place before they can make a selection, then
Tap Assistance with Use Initial Touch Location should
be turned on. If users have trouble touching the screen
at the place they want, but they can drag their fingers
to the intended location, then Tap Assistance with Use
Final Touch Location should be turned on.

(4) Tap assistance gesture delay: With Tap Assistance,
the device responds to a tap when users lift their fin-
gers within a certain period of time, called the gesture
delay. The device can respond to other gestures, like
scrolls, if the users wait longer than the gesture delay.

One consideration worth mentioning is that these settings
affect the behavior of each other. For example, if Tap As-
sistance is set to the initial location and Hold Duration is
activated, there will be two timers set on the first point the
user touches: Hold Duration timer followed by the Tap As-
sistance Gesture Delay timer. At this stage, we enumerate all
possible combinations of settings and compute how a user’s
raw touch data is modified by each combination of settings.
We then compute the input success rate using these modified
touch data.

Input Success Rate Calculation. To evaluate how an acces-
sibility configuration affects input success rate, we need to
be able to run the touch data through the device’s built-in
recognizers. However, because iOS does not allow the thresh-
olds of the built-in recognizers to be changed via any API,
we needed to simulate the exact behavior of the built-in rec-
ognizers to compute how the modified touch data will be
interpreted by the recognizers.
To better understand how the system recognizers inter-

pret touch events, we investigated public and private iOS
APIs to determine the essential thresholds used by the dif-
ferent iOS gesture recognizers [4]. Specifically, we reverse

engineered iOS gesture recognizers using the following two
steps: 1) Apple’s developer docs describing the factors each
recognizer uses for interpreting gestures, and 2) run-time in-
trospection of the names/values of parameters and constants
using Xcode’s debugger via key-value coding. These two
steps provided sufficient information to implement tap, long
press, and pan recognizers exactly as iOS. For swipe, pinch,
and rotate, we had to disassemble and debug using Hopper
[11] in order to trace the assembly code to understand the
algorithms, variables, and constants.

To validate our recognizers, we used the data set from our
24-person study mentioned in the next section of the paper,
which had a total of 108 × 24=2,592 gesture trials. In addi-
tion, we developed a second data collection app to collect
additional gesture trials. 10 participants (mean age=25.6, 4 fe-
male) were asked to directly perform each of the six types of
gestures at 100 times each, for a total of 6,000 gesture trials.
Validating these 8,592 gestures against iOS showed that we
were able to recognize the gesture events correctly for all
gesture types. For continuous gestures that also reported
numerical values (e.g., rotation angle and scale ratio), we had
<1% error between the reported numerical values.

After calculating the success rate for each given gesture
using all possible settings, we then conduct several compar-
isons to identify the most optimal setting.

Settings Recommendation. By changing the parameters of
our gesture recognizers, we can calculate the success rate for
each type of gestures for all possible setting configurations.
To calculate the overall success rate for a configuration, we
multiply the gesture success rates by the ratio of the gestures.
This ratio of gestures varies depending what apps and tasks
that users are performing. Unfortunately, we have not been
able to find a references on a real-world ratio of gestures. As
a result, we propose and consider two different ratios of ges-
tures in the calculations of a configuration’s overall success
rate. The first set, Study, sets the ratio of each gesture task
to their corresponding number of trials performed for that
particular gesture task, as detailed in Section 4: Procedure.
The second set, Uniform, equally distributes the ratios of
gestures regardless of their usage frequency, such that more
commonly-performed gestures are set with the same ratio
as less commonly-performed gestures.

For the rest of the paper, we will investigate these ratios of
gestures for evaluating input success rate. The exact ratios
for each set correspond to the gesture tasks of: a) tap, b) long
press, c) swipe, d) horizontal scroll, e) vertical scroll, f) pinch,
and g) rotate.

• Study Gesture Ratio: {50:18:8:8:8:8:8}
• Uniform Gesture Ratio: {1:1:1:1:1:1:1}

To choose the optimal configuration, we used the same
cross-validation methodology used by prior works [29, 33]

in gesture recognition to train and test on separate gesture
trials. Specifically, we conducted 5-fold cross-validation at
10 times each for each participant. We first randomly parti-
tioned the 108 gesture trials into a collection of five sets that
are nearly equal in count, {22, 22, 22, 21, 21}, with a balanced
sampling for each gesture. We then used four sets to train
the optimal settings and tested on the remaining one set.
The 5-fold validation was repeated 10 times, for a total of 50
runs, where the success rate was then averaged. During the
process, we first sort all configurations by overall success
rate after applying the specific gesture ratio, and then by
the total time duration. If multiple configurations have the
same success rate, then the configuration that is the most
responsive (i.e., with the least wait time) is preferred as the
optimal one. After ten runs, the most selected setting will be
the suggested optimal setting.

System Performance. Our current recommendation engine
is written using the CUDA toolkit [37] to utilize GPU accel-
eration, and is hosted on the GPU Accelerated Computing
instances on Amazon’s Elastic Computing Cloud (EC2) [1] It

Currently, calculating the success rates for a given gesture
using all 1.15 million possible settings takes 2.78s per gesture.
This only has to computed once for each gesture used in the
training set, and could be optimized using pruning strategies.
For example, stopping evaluating longer duration settings
once it finds a duration setting that results in no touch events.
Analysis shows that this pruning strategy would eliminate
an average of 40% of the possible settings.

Identifying the most optimal settings given a gesture train-
ing set and a target gesture ratio currently takes 0.01s. It is
fast enough for real-time adaptation of changing the target
gesture ratio (e.g. switching apps or having a sliding window
of recently used gestures).

4 USER STUDY
The user study aims to quantify how PersonalTouch affects
input performance compared to the default touchscreen con-
figuration, which has all accessibility settings turned off.
Moreover, the study explores how participants with motor
impairments currently use touchscreen accessibility features.

Participants
We recruited 12 participants (age 22 to 80, mean=59.2, SD=23.0,
8 females) with diagnosed and self-reported motor impair-
ments as described in Table 1. We also recruited 12 partici-
pants without motor impairments (age 22 to 70, mean=32.4,
SD=17.3, 6 females). All participants used touchscreen de-
vices regularly, and also used their fingers for touchscreen
input except for P1, whom regularly used a stylus with her
mouth.

Self-Reported Impairments

ID Age Gender Device Health Condition Fa Co St Mo Gr Ho Tr Sp Se Dir Dist

P1 41 F Smart phone Spinal cord injury ■ x x ■ ■ ■ x x x ■ ■

P2 27 F Smart phone Spinal cord injury ■ x ■ ■ ■ ■ x x ■ x x

P3 22 F Smart phone/Tablet Cerebral palsy ■ ■ x ■ ■ ■ x x x x x

P4 25 F Smart phone Cerebral palsy ■ x ■ x ■ x x x ■ ■ ■

P5 74 M Tablet Parkinson’s ■ ■ ■ ■ ■ ■ ■ x x x x

P6 76 M Smart phone/Tablet Parkinson’s ■ ■ x ■ ■ ■ ■ x x x x

P7 77 F Tablet Parkinson’s ■ ■ x ■ x x ■ x x x x

P8 80 M Tablet Parkinson’s ■ ■ ■ x x x ■ x x ■ ■

P9 73 F Tablet — x x x x x x ■ x x x x

P10 72 F Smart phone/Tablet — x ■ x x x x ■ x x x x

P11 73 M Tablet — x x x x x x ■ x x x x

P12 70 F Smart Phone/Tablet — x x x x x x ■ x x x x

Legend: Fa = rapid fatigue, Co = poor coordination, St = low strength, Mo = slow movements, Gr = difficulty gripping, Ho = difficulty
holding, Tr = tremor, Sp = spasm, Se = lack of sensation, Dir = difficulty controlling direction, Dist = difficulty controlling distance
Table 1: Details for the motor impaired group, including gender, age, regularly-used device, and health condition. Categories
of self-reported impairments are from Findlater et al. [16].

Procedure
We first interviewed participants about their touchscreen
experience and how they currently use accessibility features.
Participants were seated comfortably at a desk in a quiet
office setting, with a 12.9 inch iPad Pro running iOS 11.2
placed on the desk. We then explained the iOS Touch Ac-
commodations settings [10] and observed how they would
configure them.
Participants then practiced and performed the gesture

tasks in a fixed sequence of: tap, long press, swipe, horizontal

scroll, vertical scroll, pinch, and rotate (shown in Figure 2).
Each trial began when the first touch event was registered,
and ended after no touch event occurred for one second.
This one-second sliding window is necessary to record un-
intended touches such as rapid touches, due to Parkinson’s
disease or additional fingers; and palm resting, due to users’
natural inclination of resting their palms on the touchscreen.
Each participant performed 108 gesture trials: 50 (tap) +

18 (long press) + 8 (swipe) + 8 (horizontal scroll) + 8 (vertical
scroll) + 8 (pinch) + 8 (rotate). The total number of trials is

Figure 3: Touchscreen input success rate (%) for the 12 participants with motor impairments when using the default touch-
screen settings versus PersonalTouch.

capped to about 100 to ensure that participants would not
be exhausted, and the number of trials per type of gesture is
chosen to reflect their relative usage. The study session took
about 1 hour for users with motor impairments and about
30 minutes for users without motor impairments.

5 RESULTS
Our user study includes qualitative feedback on accessibility
features and quantitative results on improved touchscreen
input performance.

Awareness and Usage of Accessibility Features
3 of the 12 participants with motor impairments have used at
least one iOS accessibility feature. All 3 have used Assistive
Touch as a shortcut to switch between applications and to
control the volume. 6 participants were aware of accessibility
features but have not used any, while the remaining 3 were
not aware of them. Only 1 participant, P4, knew about Touch
Accommodations before our study because her doctor intro-
duced her to these functions. However, P4 did not use them
because she did not know how to adjust these settings by
herself. After explaining the customizable Touch Accommo-
dations settings to the participants, all expressed that they
were uncertain how to choose the appropriate settings.

Participants with Motor Impairments
Figure 3 shows the input success rate for the 12 participants
with motor impairments for tasks with our study-specific
gesture ratio (see Section 3). The average success rate signif-
icantly improved by 20.2% (pairwise t-test: N=12, p=.00054
< .05), from 55.7% using the default settings to 75.9% using
PersonalTouch.
Participants who currently have more difficulty using

touchscreens had larger improvement with PersonalTouch.
The average absolute improvement was 29.1% versus 11.2%
for participants with ≤ 50% initial success rate versus partic-
ipants with > 50% initial success rate, respectively.
Our suggestion also show improvements on tasks with

other gesture ratio. For the tasks with equal ratio of all types
of gestures, the success rate significantly improved by 8.5%
(pairwise t-test: N=12, p=.00028 < .05), from 64.5% using the
default settings to 73.0% using PersonalTouch.
Table 2 shows the optimal, personalized configurations

for the two different input scenarios that that we earlier pro-
posed for our work (see Section 3): tasks with equal ratio
values for all the gesture types (i.e., Uniform gesture ratio),
and tasks with our study-specific gesture ratio (i.e., Study ges-
ture ratio). PersonalTouch recommends different settings for
different participants because it is based on user-specificmod-
els. Table 2 also shows that participants with severe motor
impairments tend to need longer time thresholds compared
with people with minor impairments. In addition, depending

on the ratio of the different types of gestures, PersonalTouch
may recommend different accessibility settings for the same
user in order to optimize for the overall success rate.

Participants without Motor Impairments
PersonalTouch recommended the default settings as the op-
timal settings for 6 of the 12 participants without motor im-
pairments. For the other 6 participants, there is a slight—but
statistically significant—improvement using PersonalTouch.
Overall, the success rate improved by 1.28% (pairwise t-test:
N=12, p=.032 < .05), from 95.40% to 96.68% using the study-
specific gesture ratio.
Our analysis found that the errors are primarily due to

tapping being interpreted as scrolling due to unintentional
lateral movement before lifting the fingers, where Personal-
Touch recommends turning on Tap Assistance with a short
0.10s duration to mitigate this. Based on our findings, Per-
sonalTouch improves touchscreen usability for users with a
wide range of motor abilities.

Breakdown Analysis for Different Gestures
We also found that when optimizing for the overall recog-
nition rate given a gesture ratio, the most frequently-used
gesture type would have the largest improvement, while
less frequently-used gesture types would either have smaller
improvements or even reduced recognition rates. The fol-
lowing list shows all the gesture recognition rates using Per-
sonalTouch with the study-specific gesture ratio, where tap
showed the largest improvement while the least frequently-
used gestures—pinch and rotate—actually decreased in recog-
nition rate.

• Tap: 46.3% → 85.5% (+39.2%)
• Long Press: 45.8%→ 55.1% (+9.3%)
• Swipe: 82.3%→ 90.1% (+7.8%)
• Scroll: 86.1% → 92.2% (+6.1%)
• Pinch: 47.2% → 38.1% (-9.1%)
• Rotate: 56.6% → 46.8% (-9.8%)

6 DISCUSSION
App-specific Optimization
Different apps have a different mix of gesture ratios. For
example, messaging apps use more tapping and vertical
scrolling, compared to photo album apps that use more hor-
izontal scrolling. In addition to our current system-wide
optimization, we can further improve accessibility by an-
alyzing app-specific gesture ratios and dynamically adjust
accessibility settings based on the current app.
In general, the task weights could be modified through

micro factors: the application that people used and the condi-
tion (e.g., sit, walk) in which they used the app; or by macro
factors: the most-used input method for each individual user

Tasks w/ Equal Ratio of All Types of Gestures Tasks w/ Study-Specific Ratio

ID Hold Duration Ignore Repeat Tap Assistance Hold Duration Ignore Repeat Tap Assistance

P1 - - INIT(0.10) - - INIT(0.10)

P2 - 0.10 INIT(0.25) - 0.10 INIT(0.25)

P3 - 2.30 INIT(0.25) - 2.15 INIT(0.35)

P4 - 1.20 - - 0.80 -

P5 - 0.70 - 0.30 0.45 INIT(0.20)

P6 - - INIT(0.25) - - INIT(0.25)

P7 - 0.15 INIT(0.50) - 0.10 INIT(0.55)

P8 0.15 - INIT(0.25) 0.20 - INIT(0.25)

P9 - - INIT(0.15) - - INIT(0.15)

P10 0.20 0.75 - 0.25 0.55 INIT(0.10)

P11 0.10 - INIT(0.15) 0.10 - INIT(0.15)

P12 - - INIT(0.15) - - INIT(0.20)
Legend: INIT/FINAL= Tap Assistance using initial/final touch location. (UNIT: seconds)

Table 2: Optimal iOS Touch Accommodations settings for the 12 participants with motor impairments, showing that the op-
timal settings differ for: (a) tasks with uniform distribution of all types of gestures versus (b) tasks with our study-specific
gesture ratio.

and different personal touchscreen behavior along with the
growth of age. With dynamic task weights, our suggested
settings could better personalize and accommodate to the
user’s individualized needs.

Suggested Configuration on Settings beyond Touch
Accommodations
The suggested configurations that our method provided are
not limited to Touch Accommodations. The input gestures
mapping is one common method that is applied in several
accessibility settings including Switch control, which pro-
vides an alternative way to interact with the application by
using the universal switch method that people are most com-
fortable with; and Assistive touch, with customized gestures
that map the single touch gestures to multi-touch gestures
such as pinch and rotate. For example, P1 was not sure as to
whether she needed to turn on the settings that could use
single finger to pinch and to rotate. After running the analy-
sis on her behavior data, we discovered that she performed
well on the tap task and scroll task, while had difficulties
performing multi-touch gesture. Since P1 used a stylus as her
chosen input medium, it was not easy for her to complete
those challenging tasks. We provided her with suggestions
on using this specific accessibility feature when she need
to pinch or to rotate on the screen, and received positive

feedback from her such as, "Now I can use the map more
easily."

Contribution to People with Different Impairments
and Who Use Other Devices
Our method could also be applied to people with different
difficulties for touchscreen input. For users with visual im-
pairments as an example, such users often used an accessi-
bility feature called VoiceOver, which can be combined with
hand gestures to access information on touchscreen devices.
According to other previous studies [41] though, some peo-
ple with both visual and physical impairments had difficulty
performing some of the default controlled gestures—such
as three-finger swipe—for other accessibility features. These
particular users can benefit from our evaluation process for
touchscreen input, providing them with the most suitable
input method through better combinations with other acces-
sibility features.
Furthermore, our method is not only limited to iOS de-

vices, and can potentially be adapted to Android devices
that incorporate more advanced customizable settings for
accessibility. One example is an accessibility feature called
Touch and hold delay [21], which sets the time threshold for
distinguishing tap and long press. Our methods could not
only be customized on some Android devices, but could also

provide the suggested configuration on such a feature by
analyzing the user’s touch gesture data.
As for the applicability on devices with smaller screens

(e.g., smartphones), we could generalize the training data
collected from tablets onto smartphones by sampling only
tasks that also fit on a smartphone screen for training pur-
poses. For example, the center 3×3 grid of our 5×5 grid of
tap targets on an iPad actually falls within the screen size
of a large iPhone, and the training data can be generalized
as such. Actual data collection on smartphones would be
needed to validate how well this approach works, and also
how well the optimal settings for a tablet generalizes to a
smartphone—both of which we would like to explore in a
future study.

7 LIMITATIONS AND FUTUREWORK
Our vision of PersonalTouch is to dynamically adapt to users
by monitoring their individual touchscreen interactions. The
continuous observations and data collections on the user’s
touch input is also crucial for the dynamic weight. However,
there were limitations of our approach that we discovered,
and are viable areas for investigating as ideal next steps.

Initial Hand Positions for Gesturing
Our gesture tasks were designed to have a short rest between
each trial for the participants to reset their hand position, in
order to control for the effect of the proximity of the previous
target. However, users perform real-world gesturing tasks
on their touchscreen devices that do not assume that they
always reset the position of their hands each time they per-
form a different gesture. This discrepancy between our study
requiring that participants reset their hand positions and
real-world tasks that do not require such an assumption may
affect the calculation of our recommendations. As such, we
wish to pursue further study that better understands these
differences and what impacts may occur from them.

Broader Demographics of Study Participants
Another future work area involves further expanding our
current size of participants in our study to include more di-
verse demographics. That is, we are interested in conducting
user studies that evaluate our method more deeply towards
people with difficulties in touchscreen interactions. Further-
more, we are also interested in broadening the conditions
of our user study, which also emphasizes that participants
interact on a wider range of device system settings and sizes.
By investigating our approach on these additional popula-
tions and conditions, we expect to see general improvements
on touchscreen usability and accessibility for a wider range
of interaction behaviors.

Real-world Frequency of Gesture Tasks
One other limitation of our work is in the artificial selection
of our ratio values for our gesture tasks. In particular, we
explored gesture ratios that focused on two different sets:
one where each gesture ratio corresponded to the number of
trials of their gesture task in our user study, and one where
all the gesture ratios were set uniformly equivalent to each
other. Since the ratio values of the gestures not only varies
depending what apps and tasks users are performing, but
also affect the overall success rate of a configuration, we
would like to select gesture ratio values that are more closely
aligned with gesture task usage in real-world touchscreen
interactions. To do so, we would like to conduct user studies
that also investigate the frequency of occurrence for each
gesture task on different popular mobile apps and common
activities associated with those apps.

8 CONCLUSION
We present PersonalTouch, our approach to improve touch-
screen usability by suggesting personalized, optimal accessi-
bility settings. Our study results demonstrated that Person-
alTouch significantly improved users’ touch input success
rate on our gesture tasks, with 20.2% improvement for all
our users with motor impairments and 1.28% improvement
for half our users without motor impairments. We believe
that PersonalTouch can better accommodate users in more
optimally setting their touch input configurations, and there-
fore better enhancing their touchscreen gesture interaction
experiences.

REFERENCES
[1] Amazon. 2018. Amazon EC2 service instance. https://aws.amazon.

com/ec2/instance-types/p2
[2] Lisa Anthony, YooJin Kim, and Leah Findlater. 2013. Analyzing User-

generated Youtube Videos to Understand Touchscreen Use by People
with Motor Impairments. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’13). ACM, New York, NY,
USA, 1223–1232.

[3] Apple. 2018. Apple App Store. https://www.apple.com/ios/app-store/
[4] Apple. 2018. Apple Gesture Recognizer. https://developer.apple.com/

documentation/uikit/uigesturerecognizer
[5] Apple. 2018. Apple Photo. https://www.apple.com/ios/photos/
[6] Apple. 2018. Apple Researchkit. https://www.apple.com/researchkit/
[7] Apple. 2018. Apple Swipe Recognizer. https://developer.apple.com/

documentation/uikit/uiswipegesturerecognizer
[8] Apple. 2018. Apple UI Guideline. https://developer.apple.com/design/

human-interface-guidelines/
[9] Apple. 2018. Apple UIkit. https://developer.apple.com/documentation/

uikit
[10] Apple. 2018. Touch Accommodations. https://support.apple.com/

en-us/HT205269
[11] Cryptic Apps. 2018. Hopper - The macOS and Linux Disassembler.

https://www.hopperapp.com/
[12] Kevin Wayne Arthur, Nada Matic, and Paul Ausbeck. 2008. Evaluating

Touch Gestures for Scrolling on Notebook Computers. In CHI ’08

https://aws.amazon.com/ec2/instance-types/p2
https://aws.amazon.com/ec2/instance-types/p2
https://www.apple.com/ios/app-store/
https://developer.apple.com/documentation/uikit/uigesturerecognizer
https://developer.apple.com/documentation/uikit/uigesturerecognizer
https://www.apple.com/ios/photos/
https://www.apple.com/researchkit/
https://developer.apple.com/documentation/uikit/uiswipegesturerecognizer
https://developer.apple.com/documentation/uikit/uiswipegesturerecognizer
https://developer.apple.com/design/human-interface-guidelines/
https://developer.apple.com/design/human-interface-guidelines/
https://developer.apple.com/documentation/uikit
https://developer.apple.com/documentation/uikit
https://support.apple.com/en-us/HT205269
https://support.apple.com/en-us/HT205269
https://www.hopperapp.com/

Extended Abstracts on Human Factors in Computing Systems (CHI EA
’08). ACM, New York, NY, USA, 2943–2948. https://doi.org/10.1145/
1358628.1358788

[13] Jeff Avery, Mark Choi, Daniel Vogel, and Edward Lank. 2014. Pinch-
to-zoom-plus: An Enhanced Pinch-to-zoom That Reduces Clutching
and Panning. In Proceedings of the 27th Annual ACM Symposium on
User Interface Software and Technology (UIST ’14). ACM, New York, NY,
USA, 595–604. https://doi.org/10.1145/2642918.2647352

[14] Karen B. Chen, Anne B. Savage, Amrish O. Chourasia, Douglas A.
Wiegmann, and Mary E. Sesto. 2013. Touch screen performance by
individuals with and without motor control disabilities. Applied Er-
gonomics 44, 2 (2013), 297–302.

[15] Leah Findlater, Jon E. Froehlich, Kays Fattal, Jacob O. Wobbrock, and
Tanya Dastyar. 2013. Age-related Differences in Performance with
Touchscreens Compared to Traditional Mouse Input. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI
’13). ACM, New York, NY, USA, 343–346.

[16] Leah Findlater, Alex Jansen, Kristen Shinohara, Morgan Dixon, Peter
Kamb, Joshua Rakita, and Jacob O. Wobbrock. 2010. Enhanced Area
Cursors: Reducing Fine Pointing Demands for People with Motor
Impairments. In Proceedings of the 23Nd Annual ACM Symposium on
User Interface Software and Technology (UIST ’10). ACM, New York, NY,
USA, 153–162. https://doi.org/10.1145/1866029.1866055

[17] Leah Findlater, Karyn Moffatt, Jon E. Froehlich, Meethu Malu, and Joan
Zhang. 2017. Comparing Touchscreen and Mouse Input Performance
by People With and Without Upper Body Motor Impairments. In
Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems (CHI ’17). ACM, New York, NY, USA, 6056–6061.

[18] Google. 2018. Google Gesture Design. https://material.io/design/
interaction/gestures.html

[19] Google. 2018. Google Map. https://www.google.com/maps
[20] Google. 2018. Google Play Store. https://play.google.com/store
[21] Google. 2018. Touch and Hold Delay. https://support.google.com/

accessibility/android/answer/6006989
[22] Tiago Guerreiro, Hugo Nicolau, Joaquim Jorge, and Daniel Gonçalves.

2010. Towards Accessible Touch Interfaces. In Proceedings of the 12th
International ACM SIGACCESS Conference on Computers and Accessi-
bility (ASSETS ’10). ACM, New York, NY, USA, 19–26.

[23] Eve Hoggan, John Williamson, Antti Oulasvirta, Miguel Nacenta,
Per Ola Kristensson, and Anu Lehtio. 2013. Multi-touch Rotation
Gestures: Performance and Ergonomics. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’13). ACM,
New York, NY, USA, 3047–3050.

[24] Curt B. Irwin and Mary E. Sesto. 2012. Performance and touch charac-
teristics of disabled and non-disabled participants during a reciprocal
tapping task using touch screen technology. Applied Ergonomics 43, 6
(2012), 1038–1043.

[25] Masatomo Kobayashi, Atsushi Hiyama, Takahiro Miura, Chieko
Asakawa, Michitaka Hirose, and Tohru Ifukube. 2011. Elderly User
Evaluation of Mobile Touchscreen Interactions. In Human-Computer
Interaction – INTERACT 2011 (INTERACT ’11), Pedro Campos, Nicholas
Graham, Joaquim Jorge, Nuno Nunes, Philippe Palanque, and Marco
Winckler (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, Ger-
many, 83–99.

[26] Heidi Koester, Rich Simpson, and Jennifer Mankowski. 2013. Software
wizards to adjust keyboard andmouse settings for people with physical
impairments. J Spinal Cord Med 36, 4 (jul 2013), 300–312.

[27] Heidi Horstmann Koester and Jennifer Mankowski. 2014. Automatic
Adjustment of Mouse Settings to Improve Pointing Performance. As-
sistive Technology 26, 3 (2014), 119–128.

[28] Heidi Horstmann Koester and Jennifer Mankowski. 2015. Automatic
Adjustment of Keyboard Settings Can Enhance Typing. Assistive
Technology 27, 3 (2015), 136–146.

[29] Jhe-Wei Lin, Chiuan Wang, Yi Yao Huang, Kuan-Ting Chou, Hsuan-Yu
Chen, Wei-Luan Tseng, and Mike Y. Chen. 2015. BackHand: Sensing
Hand Gestures via Back of the Hand. In Proceedings of the 28th Annual
ACM Symposium on User Interface Software & Technology (UIST ’15).
ACM, New York, NY, USA, 557–564. https://doi.org/10.1145/2807442.
2807462

[30] Alexander Mertens, Nicole Jochems, Christopher M. Schlick, Daniel
Dünnebacke, and Jan Henrik Dornberg. 2010. Design Pattern TRA-
BING: Touchscreen-based Input Technique for People Affected by
Intention Tremor. In Proceedings of the 2Nd ACM SIGCHI Symposium
on Engineering Interactive Computing Systems (EICS ’10). ACM, New
York, NY, USA, 267–272.

[31] Kyle Montague, Vicki L. Hanson, and Andy Cobley. 2012. Designing
for Individuals: Usable Touch-screen Interaction Through Shared User
Models. In Proceedings of the 14th International ACM SIGACCESS Con-
ference on Computers and Accessibility (ASSETS ’12). ACM, New York,
NY, USA, 151–158.

[32] Kyle Montague, Hugo Nicolau, and Vicki L. Hanson. 2014. Motor-
impaired Touchscreen Interactions in the Wild. In Proceedings of the
16th International ACM SIGACCESS Conference on Computers & Acces-
sibility (ASSETS ’14). ACM, New York, NY, USA, 123–130.

[33] Martez E. Mott, Radu-Daniel Vatavu, Shaun K. Kane, and Jacob O.
Wobbrock. 2016. Smart Touch: Improving Touch Accuracy for People
with Motor Impairments with Template Matching. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems (CHI
’16). ACM, New York, NY, USA, 1934–1946.

[34] Maia Naftali and Leah Findlater. 2014. Accessibility in Context: Under-
standing the TrulyMobile Experience of Smartphone Users withMotor
Impairments. In Proceedings of the 16th International ACM SIGACCESS
Conference on Computers & Accessibility (ASSETS ’14). ACM, New York,
NY, USA, 209–216.

[35] Alexander Ng and Stephen Brewster. 2017. An Evaluation of Touch and
Pressure-Based Scrolling andHaptic Feedback for In-Car Touchscreens.
In Proceedings of the 9th International Conference on Automotive User
Interfaces and Interactive Vehicular Applications (AutomotiveUI ’17).
ACM, New York, NY, USA, 11–20. https://doi.org/10.1145/3122986.
3122997

[36] Francisco Nunes, Paula Alexandra Silva, João Cevada, Ana Correia Bar-
ros, and Luís Teixeira. 2016. User interface design guidelines for smart-
phone applications for people with Parkinson’s disease. Universal
Access in the Information Society 15, 4 (nov 2016), 659–679.

[37] NVIDIA. 2018. NVIDIA Cuda. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html

[38] Sayan Sarcar, Jussi P.P. Jokinen, Antti Oulasvirta, ZhenxinWang, Chak-
lam Silpasuwanchai, and Xiangshi Ren. 2018. Ability-Based Optimiza-
tion of Touchscreen Interactions. IEEE Pervasive Computing 17, 1
(2018), 15–26.

[39] Mary E. Sesto, Curtis B. Irwin, Karen B. Chen, Amrish O. Chourasia,
and Douglas A. Wiegmann. 2012. Effect of Touch Screen Button Size
and Spacing on Touch Characteristics of Users With and Without
Disabilities. Human Factors 54, 3 (2012), 425–436.

[40] Shari Trewin. 2004. Automating Accessibility: The Dynamic Keyboard.
In Proceedings of the 6th International ACM SIGACCESS Conference on
Computers and Accessibility (ASSETS ’04). ACM, New York, NY, USA,
71–78.

[41] Shari Trewin, Cal Swart, and Donna Pettick. 2013. Physical Accessibil-
ity of Touchscreen Smartphones. In Proceedings of the 15th International
ACM SIGACCESS Conference on Computers and Accessibility (ASSETS
’13). ACM, New York, NY, USA, 19:1–19:8.

https://doi.org/10.1145/1358628.1358788
https://doi.org/10.1145/1358628.1358788
https://doi.org/10.1145/2642918.2647352
https://doi.org/10.1145/1866029.1866055
https://material.io/design/interaction/gestures.html
https://material.io/design/interaction/gestures.html
https://www.google.com/maps
https://play.google.com/store
https://support.google.com/accessibility/android/answer/6006989
https://support.google.com/accessibility/android/answer/6006989
https://doi.org/10.1145/2807442.2807462
https://doi.org/10.1145/2807442.2807462
https://doi.org/10.1145/3122986.3122997
https://doi.org/10.1145/3122986.3122997
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

[42] Huawei Tu, Xiangshi Ren, Feng Tian, and Feng Wang. 2014.
Evaluation of Flick and Ring Scrolling on Touch-Based Smart-
phones. International Journal of HumanâĂŞComputer Interaction
30, 8 (2014), 643–653. https://doi.org/10.1080/10447318.2014.907017
arXiv:https://doi.org/10.1080/10447318.2014.907017

[43] Chat Wacharamanotham, Jan Hurtmanns, Alexander Mertens, Martin
Kronenbuerger, Christopher Schlick, and Jan Borchers. 2011. Evalu-
ating Swabbing: A Touchscreen Input Method for Elderly Users with
Tremor. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’11). ACM, New York, NY, USA, 623–626.

[44] KarlWiegand. 2015. Impact of Motor Impairment on Full-Screen Touch
Interaction. Journal on Technology and Persons with Disabilities 3, 22

(2015), 58–76.
[45] Jian Zhao, R. William Soukoreff, and Ravin Balakrishnan. 2011. A

model of multi-touch manipulation. In Proceedings of the 2nd Annual
Meeting of the Graphics, Animation, and New Media (GRAND ’11).
GRAND NCE, Ottawa, Ontario, Canada, 58–76.

[46] Yu Zhong, Astrid Weber, Casey Burkhardt, Phil Weaver, and Jeffrey P.
Bigham. 2015. Enhancing Android Accessibility for Users with Hand
Tremor by Reducing Fine Pointing and Steady Tapping. In Proceedings
of the 12th Web for All Conference (W4A ’15). ACM, New York, NY,
USA, 29:1–29:10.

https://doi.org/10.1080/10447318.2014.907017
http://arxiv.org/abs/https://doi.org/10.1080/10447318.2014.907017

	Abstract
	1 Introduction
	2 Related Work
	Keyboard and Mouse Accessibility Settings
	Touchscreen Accessibility

	3 System Design and Implementation
	Touch Input Tasks
	Recommending Personalized Settings

	4 User Study
	Participants
	Procedure

	5 Results
	Awareness and Usage of Accessibility Features
	Participants with Motor Impairments
	Participants without Motor Impairments
	Breakdown Analysis for Different Gestures

	6 Discussion
	App-specific Optimization
	Suggested Configuration on Settings beyond Touch Accommodations
	Contribution to People with Different Impairments and Who Use Other Devices

	7 Limitations and Future Work
	Initial Hand Positions for Gesturing
	Broader Demographics of Study Participants
	Real-world Frequency of Gesture Tasks

	8 Conclusion
	References

