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ABSTRACT
Blind users rely on alternative text (alt-text) to understand an im-
age; however, alt-text is often missing. AI-generated captions are
a more scalable alternative, but they often miss crucial details or
are completely incorrect, which users may still falsely trust. In
this work, we sought to determine how additional information
could help users better judge the correctness of AI-generated cap-
tions. We developed ImageExplorer, a touch-based multi-layered
image exploration system that allows users to explore the spatial
layout and information hierarchies of images, and compared it
with popular text-based (Facebook) and touch-based (Seeing AI)
image exploration systems in a study with 12 blind participants.
We found that exploration was generally successful in encouraging
skepticism towards imperfect captions. Moreover, many partici-
pants preferred ImageExplorer for its multi-layered and spatial
information presentation, and Facebook for its summary and ease
of use. Finally, we identify design improvements for effective and
explainable image exploration systems for blind users.
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• Human-centered computing → Human computer interac-
tion (HCI); Accessibility technologies.
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1 INTRODUCTION
Understanding images on the web can be challenging for blind
or visually impaired (BVI) individuals. BVI users often depend on
alternative text (also known as alt-text) [10] in order to understand
the content of an image. However, in part due to the rapid increase
in the quantity of user-uploaded content online, a growing number
of images are missing alt-text, leaving a large fraction of images
inaccessible [39]. While some platforms have provided users with
the option to add alt-text as they upload a photo, these options are
rarely used [53, 56]. For example, Gleason et al. found that only
0.1% of tweets with images contained alt-text [15]. To circumvent
this problem, recent work has instead turned to auto-generating
image captions [37, 51, 57] with the goal of providing high quality
alt-text at scale. Automated systems have shown to greatly improve
the coverage of alt-text [17, 20], but the quality and accuracy of
these captions still remain questionable.

Prior work has noted that auto-generated captions are often
error-prone, or missing key information about the image context,
which has a negative effect on image understanding [44, 49]. When
AI-generated captions are incorrect or misleading, without the
means to verify correctness, BVI users place a high degree of trust in
them, especially if they do not have access to additional information
[35]. MacLeod et al. observed that BVI users often attempt to resolve
discrepancies in captions by filling in details and developing their
own reasoning that could explain the scenario [35]. To address this
issue, they aimed to encourage skepticism in generated captions by
altering the caption’s framing.

Beyond being able to attribute errors to captions, enabling BVI
users to identify specific errors in generated captions would pro-
vide a higher level of image understanding. One way to do this
could be to provide richer ways to interact with an image beyond
a single caption, so that users can investigate the auto-generated
captions for themselves after gaining a better understanding of the
image’s content and layout. Prior work has suggested a variety of
image exploration modalities, including image tags [12] and touch
exploration [37, 38, 59]. Thus, in this work, we aim to address the
following question:

What image exploration modality could best support BVI peo-
ple in identifying errors in auto-generated image captions?

To answer this question, we present an evaluation of three im-
age exploration systems: Facebook’s text-based ‘Detailed Image
Descriptions’ feature [12], Seeing AI’s touch-based image explo-
ration feature [37], and an exploration system we developed as a
design probe, ImageExplorer. ImageExplorer’s design is inspired by
Morris et al.’s finding that the following two approaches are helpful
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in improving BVI people’s understanding of images: 1) providing
alt-text through multiple “layers,” where deeper layers contain addi-
tional detail, and 2) supporting touch-based interaction with images
[38]. In this paper, we aim to combine these two approaches in a sin-
gle system to provide as much information as possible, and compare
it with state-of-the-art text- and touch-based image exploration sys-
tems to understand if doing so will give rise to skepticism towards
auto-generated captions and further improve BVI users’ abilities to
identify errors in these descriptions.

Using these exploration systems, we conducted a comparison
study with 12 blind participants. Participants explored a total of
9 images with varying caption qualities using the three systems
and were asked to rate the accuracy of the auto-generated captions
before and after explorations. After the participants have used all
three systems, we asked them to rank the three systems based
on ease of use, helpfulness, and overall preference, compare text-
with touch-based systems, and compare single- with multi-layered
systems. Specifically, we aimed to assess the following research
questions:

RQ1: Do image exploration systems that provide additional in-
formation about an image help blind users better judge the
correctness of AI-generated captions?

RQ2: Between text- and touch-based image exploration systems,
which is more effective and why?

RQ3: Between the touch-based image exploration systems, is a
single- or multi-layered approach more effective and why?

RQ4: What are users’ perceptions and preferences towards image
exploration systems?

We found that participants were unsure about the accuracy of
auto-generated captions prior to exploring the images. After explo-
rations, participants, on average, gave significantly lower accuracy
ratings than their initial scores, which suggests elevated skepticism.
When analyzing this further, there was a significant difference in
change in scores for image caption qualities B (partially inaccurate)
and C (inaccurate), but not A (mostly accurate), which indicates
that participants were able to determine that an inaccurate caption
is, in fact, inaccurate. Additionally, there was no significant differ-
ence in change in scores between the three systems overall and for
each caption quality level. However, when more specifically com-
paring text- and touch-based systems, participants changed and
decreased their score significantly more when using touch-based
systems than the text-based one for images with inaccurate cap-
tions. Furthermore, ImageExplorer with multi-layered information
led participants to have more correct explanations than Seeing AI
and Facebook did. Overall, participants agreed that while a text-
based system was easier to use, a touch-based system provided
much more information about an image such as absolute and rel-
ative positions. When comparing a single-layered system with a
multi-layered one, participants preferred the latter because it gen-
erates a hierarchy, which allows users to understand which main
object that sub-objects belong to, and gives users the autonomy to
choose whether to view the additional information or not. Finally,
when asked which system they prefer overall, participants were
split evenly between Facebook and ImageExplorer.

These results indicate that both text- and touch-based explo-
rations encouraged skepticism towards imperfect AI-generated im-
age captions. However, there were differences in user preferences,
mainly, Facebook was the easiest to use, while ImageExplorer was
the most helpful in understanding the content of the images. In
summary, we contribute a thorough evaluation of image explo-
ration modalities in allowing BVI users to judge caption accuracy.
Our study revealed design improvements for effective and explain-
able image exploration systems in the future. Overall, our work
demonstrates the potential of image exploration systems to allow
BVI users to independently verify captions.

2 RELATEDWORK
Image captioning is a widely researched area in accessibility. Specif-
ically, our work builds on prior work in (i) image accessibility
issues, (ii) automated image captioning systems, (iii) alternative
image exploration systems, and (iv) explaining and understanding
automated systems.

2.1 Image Descriptions
Image descriptions are the primary method for screen reader users
to access image content online or in other software. Ideally, image
descriptions are created by website authors following the Web
Content Accessibility Guidelines [10]. However, a long stream of
research has consistently found that this is not the case, with a
recent estimate of 20-35% of images on top websites lacking image
descriptions [5, 20, 40].

With the rise of social media and user-generated content, caption
coverage has become significantly worse [53, 56]. In 2015, Morris
et al. found that approximately 28.4% of English tweets contained
some multimedia, and that in over 70% of these, the embedded
images were considered important to understanding the meaning
of the tweet [39]. Although Twitter now allows users to add alt text
to their images, Gleason et al. found that only 0.1% of tweets with
images contained alt text [15].

2.2 Automated Image Captioning
Given the lack of consistent captioning by content authors, a vari-
ety of automated approaches have been used to generate captions.
These approaches generally fall into two categories, either using
hybrid approaches such as crowdsourcing or web crawling to reuse
captions, or advancing machine learning techniques to fully gener-
ate an image caption.

Hybrid methods for generating image captions have been used
in prior work. A variety of crowdsourcing systems have been de-
veloped, and are generally successful in generating captions [4, 44].
For example, WebInSight provided a mechanism for users to request
images on a web page to be sent to a labelling service for captioning
[5]. Unfortunately, these systems are costly in price and latency.
Caption Crawler used a different approach, they instead perform a
reverse search for the image to scrape alt text from elsewhere on
the web [20]. Sammani et al. build off of this approach by fetching
existing captions and directly editing them with a language model
[45]. While this works well for some online content, many images
on social media are user generated and thus do not exist elsewhere.
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Machine learning methods typically attempt to combine vision
and language models in order to fully generate an image caption
[13, 41, 51]. While many of these models were not designed to
provide image descriptions for screen reader users, some systems
have aimed to do this. For instance, Facebook’s Automatic Alt-
Text system originally aimed to generate image tags that describe
the prominent objects in an image [57]. More recently, Facebook
has updated this system to provide a full natural-language image
description, along with providing tags grouped by position, promi-
nence, and category [12]. Seeing AI similarly provides full image
descriptions, and allows users to quickly obtain captions for pho-
tos locally on their mobile device [37]. Twitter A11y combines
automated methods (optical character recognition and scene de-
scription) with hybrid methods (web crawling, link following, and
crowdsourcing) to greatly increase the coverage of captions on
Twitter [17].

However, prior work has noted that these generated captions
are often error-prone, which has a negative effect on image under-
standing [44]. While Twitter A11y increases coverage greatly, they
found that <60% of captions were high quality [17]. Even when
technically correct, generated captions are often missing key infor-
mation that users need to know to fully understand the context of
why the photo was used or to decide if it is a good photo to post
[49, 58]. MacLeod et al. found that blind users place a high degree of
trust in automatically generated captions, and resolve dissonance
by describing scenarios that would fit the caption. Specifically, they
found that captions that emphasized the probability of error (i.e.,
“There’s a small chance I’m wrong, but I think that’s a cat sitting on
a couch”) encouraged more skepticism and caused users to attribute
errors to captions more than positively-phrased captions [35]. In
this case, encouraging skepticism in generated captions is poten-
tially beneficial as it could allow users to better identify incorrect
captions and thus have a better understanding of images overall.
In this paper, we hope to further understand how to encourage
skepticism in captions, and how blind users could independently
identify errors in captions.

2.3 Alternative Image Exploration Systems
As an alternative to textual image descriptions, prior work has also
explored using touch or multimedia systems to convey image con-
tent. Physical tactile image representations created by embossing,
3D printing, or tactile displays have been used to convey graphs,
maps, and models [18, 19, 22, 27, 46, 48, 50]. Audio is commonly
used alongside these representations or alongside typical captions
to guide exploration [16, 46]. Prior work has tried to use common
touch screens for a similar effect. Systems such as Seeing AI, Re-
gionSpeak, and TouchCursor place bounding boxes over key objects
in an image, then read out object descriptions as users move their
finger into one of the bounding boxes [23, 37, 59]. These systems
also use audio and haptic feedback to notify users when their finger
enters or leaves a bounding box. Morris et al. evaluated a similar
touch-based exploration system compared with two other alter-
native interactions for image understanding: providing layered
captions or the ability to explore a single object further, and playing
sound effects along with an image [38]. They found that touch
exploration was promising in that it allowed users to visualize the

spatial layout of an image, while providing layered captions was
helpful in that users could choose what level of detail they wanted
to know. Rastogi et al. similarly used a hierarchical approach to
allow users to zoom into graphics on tactile displays [42].

In this work, we are interested in how touch-based exploration
systems may be used to help users independently verify text cap-
tions. Given that touch-based exploration systems show potential
for increasing image understanding, we investigate how users may
resolve discrepancies between their visualization of an image from
touch and the text caption. Additionally, building off of Morris et
al.’s evaluation [38], we combine two promising approaches (touch
exploration and layered captions) into one system to compare with
existing approaches.

2.4 Understanding Automated Systems
With the rise of automated systems in all domains, research around
transparent and explainable artificial intelligence has also grown.
Doshi-Velez and Kim define interpretability as ‘the ability to explain
in understandable terms to a human.’ Interpretability is used to con-
firm a variety of important factors in automated systems’ decision
making, including fairness, reliability, and trust [11]. While fairness
and non-discrimination are aspects that are particularly relevant
to the accessibility community [2, 14, 21], in this work we focus
on how users perceive the reliability of an automatically generated
image description.

Approaches to interpretability generally fall into two categories:
creating inherently interpretable glass-box models, or providing
post-hoc explanations for black-box models [29]. In image caption-
ing, interpretability is typically achieved with post-hoc explana-
tions that highlight regions of the image associated with a term
or phrase in order to provide a visual reason for the chosen term
[6, 24, 34, 43, 54]. Given these inherently visual explanations, alter-
native methods for increasing blind users’ understanding of image
captioning errors are needed.

As mentioned, one potential method for increasing skepticism
in captions is to verbally frame them as uncertain [35], which is a
form of model transparency [3]. While this increases awareness of
potential errors, it does not necessarily help correct them. In this
work, given that we would like to explain existing image caption-
ing, we instead look at the potential of related models—character
recognition, object recognition, and object segmentation—to serve
as explanations. We thus compare text- and touch-based image
exploration systems to understand their potential as proxies for
post-hoc model explanations.

3 METHODS
In order to understand how different image exploration systems
could support BVI users in judging caption accuracy and identify-
ing errors in captions, we ran a user study with 12 blind iPhone
users. During the study, we asked participants to use three sys-
tems—Facebook’s text-based ‘Detailed Image Descriptions’ feature
[12], Seeing AI’s touch-based image exploration feature [37], and
our touch- and layer- based ImageExplorer system—to obtain more
information about an image and judge the accuracy of natural
language captions generated by Microsoft Cognitive Services [9].
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Figure 1: ImageExplorer user interface. The first information layer shows primary objects in the image outlinedwith polygonal
boundaries. After double tapping on an object, users enter the second information layer, which shows rectangular bounding
boxes around various detailed sub-objects. After exploring an object in detail, users can double tap anywhere to exit the second
layer.

3.1 Design Probe: ImageExplorer
ImageExplorer is an image exploration system that uses touch and
multiple information layers to allow users to explore the content
of the image, their spatial relationships, and their hierarchy [31].
ImageExplorer was designed to allow users to identify common
errors in auto-generated captions, including missing information,
incorrect object labels, and incorrect layout descriptions (examples
are shown in Figure 3). It is intended to supplement auto-generated
natural language captions, which often have errors; we instead fo-
cus on providing BVI users with a variety of raw information from
off-the-shelf models so that they can judge captions independently.
It first collects information from an image through a handful of deep
learning algorithms, aiming to reduce the probability of missing
key information. It then separates this large quantity of information
into two presentation layers using a set of criteria, allowing users
to review details about an object and identify mislabeling. Finally,
it provides a touch interface supported by audio feedback for ac-
cessing object information, allowing users to explore the spatial
relationships between objects. We implemented ImageExplorer as
an iPhone application due to pervasive use by the target population.

3.1.1 Element Detection and Scene Hierarchy. ImageExplorer lever-
ages a variety of existing deep learning models to detect image
content and create a scene hierarchy that can later be explored
by users. It focuses on extracting common image elements: the
location, boundaries, and descriptive labels of people and objects in
an image, and transcriptions of printed text. Specifically, we used
Mask R-CNN model [25] with ResNet-101 [26] and Feature Pyra-
mid Network (FPN) [32] as backbone pre-trained on the MS-COCO
dataset [33] to generate element masks and labels as the first layer
of presented information. Compared with other object recognition
models, Mask R-CNN is unique in that it generates segmentation
masks, which are polygon-shaped borders that best fit elements of
interest. Because ImageExplorer uses object boundaries to deter-
mine the scene hierarchy, tighter object borders resulted in a more

accurate representation than traditional bounding boxes. Addition-
ally, polygonal boundaries could better represent spatial aspects of
an image such as size and shape of elements and overlap between
elements.

To extract more regional and fine-grained information and de-
scriptions needed to construct the second layer, we further utilized
the existing Google Cloud Vision Model [8] to perform object, face
and text detection and labeling, and the DenseCap model [28] with
VGG-16 [47] as architecture pre-trained on the Visual Genome
dataset [30] to produce more localized descriptions for specific
image regions (e.g., “front wheel” and “back wheel” of a vehicle).
Each regional element is displayed using a traditional bounding
box if it was recognized with a confidence level of 75% or above.
This threshold was chosen empirically based on our observations
of performance, such that it removed many misleading labels while
still maintaining a sufficient amount of labels overall. For instance,
DenseCap described the street in image 1A in Figure 3 as “the
tennis court is white” (70% confidence), which was removed by
this threshold. On the other hand, the label, “the front wheel of
the motorcycle” (85% confidence) was kept. This threshold is not
flawless as it also removed a few correct labels such as “building is
brick” (52% confidence) and kept incorrect labels such as “the shirt
is white” (for the bee in image 2C, 87% confidence), but it neither
removed too many labels nor kept many inaccurate labels.

To create a second layer in the hierarchical structure using the
regional elements, we set up the following criteria: (i) the area of
the regional element is smaller than that of the first-layer element,
and (ii) at least 75% of the regional element overlap with a specific
first-layer element. Both of these criteria were chosen because a
bounding box may have areas outside the tighter polygon. The
chosen second-layer elements were then paired with the first-layer
element that they overlapped with the most.

Finally, any areas in both layers smaller than 34 pixels by 34
pixels were omitted to remove elements that are too small to touch.
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We chose this constraint based on two popular human interface de-
sign guidelines for mobile devices: Apple recommends a minimum
constraint of 44 pixels by 44 pixels [1], and Microsoft suggests a
minimum constraint of 34 pixels by 34 pixels [36]. To include as
much information as possible, we opted to use the smaller con-
straint of the two. Note that these guidelines were not developed
for people with visual impairments, which deserves future work.

3.1.2 ImageExplorer User Interface. ImageExplorer provides a touch
interface for exploring the content and hierarchy of an image that
we extracted. An overview is shown in Figure 1. When the user
opens an image, ImageExplorer first vocalizes the number of ele-
ments available, and displays the first-layer elements as polygonal
boundaries overlaid onto the image for users to explore. As users
move their finger across an image, they receive audio feedback:
when not touching any element, a background tone plays; when
touching an element, its name is read verbally (e.g., “bed,” “chair,”
“handbag”). If an element contains sub-elements, users are then
verbally prompted to double tap for more information (e.g., “bed,
double tap to explore”). If the user chooses to double tap on a first
layer element, the system will display its corresponding second
layer elements, which the users can again explore using touch
(e.g., “a white pillow” and “the bed is blue”). Users can exit the
second layer at any time by double tapping anywhere on the screen.
When the user returns to the first layer, the system will say the
number of elements yet to be explored, providing awareness of
exploration progress (e.g., “going back to the whole image, two ob-
jects remaining”). If a first layer element does not have any second
layer elements, the system will decrement the number of elements
left to explore as soon as the user touches that element and provide
an updated number to the users.

3.2 Participants
We recruited 12 BVI participants from an emailing list. Our study
was approved by the university’s Institutional Review Board, and
participants consented to participation, screen and audio recordings
through both email and verbal responses. At the start of the study,
we asked participants for their demographic information (Table 1).
Participants were between 27 and 69 years of age (𝜇 = 48.17 years,

ID Gender Age Vision Level
P1 Female 66 Some light perception, since age 10
P2 Female 46 Fully blind, since age 20
P3 Male 45 Light perception, since childhood
P4 Female 67 Fully blind, since birth
P5 Male 69 Fully blind, since birth
P6 Male 27 Some light perception
P7 Female 38 Fully blind, since birth
P8 Male 34 Fully blind, since childhood
P9 Female 58 Fully blind, since birth
P10 Male 30 Some color perception in peripheral vision
P11 Male 43 Fully blind, since age 31
P12 Female 55 Some light perception, since birth

Table 1: Participant demographics for our user study.

Figure 2: Facebook and Seeing AI’s exploration interfaces:
Left: Facebook’s detailed image description interface. A list
of text grouped into categories. Users can swipe to read
through the textual information. Right: Seeing AI’s touch
exploration interface. When entering an element, it reads
the name of that element.

𝜎 = 14.69), with six being female and six being male. Seven were
totally blind (four of them were born blind), while the rest were
legally blind with some light perception. When asked how familiar
they were with Facebook, they rated an average of 5.58 out of 7
(𝜎 = 1.62, where 5 is somewhat familiar, and 6 is familiar). When
asked how familiar they were with Seeing AI, they rated an average
of 5.42 out of 7 (𝜎 = 2.02). All of our participants reported that they
use VoiceOver as their mobile screen reader.

3.3 Apparatus
We asked participants to download the Facebook, Seeing AI and
ImageExplorer applications onto their phones prior to the study
session. The study was conducted remotely using the Zoom mo-
bile app due to the COVID-19 pandemic. Participants shared the
screens and audio of their devices as they completed the study.
Thus, study coordinators could both verbally provide instructions
to participants and observe how they used each application.

For Facebook, we set up a new account with posts containing
the images used for our study and asked participants to log in
using our credentials prior to the study. To explore an image using
Facebook’s Detailed Image Descriptions feature, participants first
navigate to a post containing that image, and Facebook will read
its alt-text. To control for the study, we replaced Facebook’s auto-
generated alt-text with the ones generated by Microsoft Cognitive
Services [9]. Participants can swipe up or down on the post until
they hear “Generate Detailed Image Descriptions” and then double
tap to activate it. Facebook presents additional information about
an image as a list of text, which is grouped into multiple categories
such as Position Information, Size Information, and Elements by
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Category (an example is shown in Figure 2). Participants can access
this information using screen reader gestures.

For Seeing AI, we sent participants the necessary images in an
email thread so that they could download them prior to the study. To
explore an image using Seeing AI, participants first choose Browse
Photos and select the image to explore. Seeing AI will read the
auto-generated caption pertaining to that image. Participants can
then activate the Explore button to enter the touch exploration
interface, where objects are presented as single-layered bounding
boxes that participants can move their finger along the interface
to hear real-time feedback of what is underneath their finger (an
example is shown in Figure 2).

The ImageExplorer iOS app was distributed using TestFlight,
which we asked participants to install prior to the study. As de-
scribed in Section 3.1, participants can explore an image using touch
similar to that in Seeing AI. In addition, participants can double tap
on a first layer element to access its corresponding second layer
elements (an example is shown in Figure 1).

3.4 Image Selection
To pick the images used in our study, we first randomly selected and
generated captions for a total of 30 images from MS-COCO [33]
and Unsplash [52] image data sets. We then classified the auto-
mated caption accuracy following a similar process to Gleason et
al. [15, 17], who used four quality levels for human-written alt text:
irrelevant, somewhat relevant, good, and great. However, no auto-
generated captions were ‘great’ and even the best ones are still
missing secondary or minor information and could be improved
by providing additional details [49]. Therefore, we modified these
ratings to instead use three quality levels: mostly accurate (A), par-
tially inaccurate (B), and inaccurate (C). Caption quality level A
was assigned when an image had a mostly accurate caption, but is
missing minor information and could be slightly improved. Cap-
tion quality level B was assigned when an image had a somewhat
inaccurate caption, for example, if an object was missing a label,
had an incorrect count, or if a single object was labeled incorrectly.
Captions of this level do not necessarily detract completely from
someone’s understanding of the content. Caption quality level C
was assigned when a caption was very inaccurate, where the labels
or situation in the image were described completely incorrectly.
These errors are significant because they detract completely from
someone’s understanding of the image’s content and meaning.

Finally, to limit the study duration, we chose three images of each
quality, for a total of nine images (shown in Figure 3). To do so, we
selected images with varying subjects (e.g, people, animals, object),
scenes (e.g., indoor, outdoor), and scales (e.g., close or wide shot).
The nine images were then grouped into three sets such that each
set contains one mostly accurate (A), one partially inaccurate (B),
and one inaccurate caption (C). For example, image set 3 contains:
3A, which represents an image with a correct caption —“Probably
a book on a table,” 3B, which represents an image with a partially
correct caption —“A cat sitting on a chair,” although the cat is on a
table, and 3C, which represents an image with an incorrect caption
—“Probably calendar,” although the image is about a bag of Kraft
mozzarella cheese.

3.5 Procedure
Participants used each of the three systems to explore a different
set of three images with three quality levels as described above. The
order in which participants used each system was randomized and
counter-balanced, as was the order of the given image set. Over
the course of the study, participants thus explored all nine images.
Participants explored three of the nine images for each system. For
example, P1 first used ImageExplorer to explore images 2C, 2A,
then 2B; then used Facebook for images 3A, 3B, and 3C; finally,
they used Seeing AI for images 1B, 1C, and 1A.

For each system, participants first explored a tutorial image
with a correct caption to familiarize themselves with the system.
Then for each study image, participants were first provided with
its auto-generated caption from Microsoft Cognitive Services [9],
and we asked them to rate their agreements with the statements
‘This caption is accurate,’ and ‘I am confident in my scores’ on a
7-point Likert scale (where 1 is ‘strongly disagree’ and 7 is ‘strongly
agree’). Then, participants explored the image using one of the
three systems and rated it again with the same set of questions.
Once participants finished exploring the three images using each
system, we asked them to rate their agreement with the statements
‘This system was easy to use’ and ‘This system was helpful.’ For
each statement, we also asked them to explain their reasoning for
their rating. Finally, after participants used all three systems, we
asked them to: rank the three systems in terms of (i) ease of use, (ii)
helpfulness in understanding the images, (iii) preference of use, as
well as (iv) compare Facebook with the two touch-based systems
(i.e. Seeing AI and ImageExplorer) and (v) compare Seeing AI with
ImageExplorer. The study took about two hours, and participants
were each compensated for $50. The screen and audio recordings
were collected and transcribed for further analysis.

3.6 Analysis
We adopted a mixed-methods approach and performed both quan-
titative and qualitative analysis on our data. We first define the
factors and measures in our quantitative analysis. The main mea-
surement we analyzed was the accuracy ratings of image captions
(1 = “very inaccurate”, 7=“very accurate”) and their changes. To
understand whether participants can identify image caption quality
before exploration, we took caption quality as the factor (A, B, C),
and compared the measurement of raw caption accuracy score us-
ing one-way ANOVA with follow-up Tukey’s HSD post-hoc tests.
Regarding the exploration time, we compared the measurement
of exploration duration across three systems (as factors) using the
same statistical analysis.

For the post-exploration analysis, the next step was to under-
stand whether participants change their initial accuracy ratings
and have better judgement on caption correctness after any form of
exploration (RQ1). We took completion of exploration as the factor
(before vs. after), and compared the measurement of raw caption
accuracy scores with respect to (i) all images and (ii) each image
set with different caption quality using Student’s t-test (two-tail).
Following that, we further explored if different exploration methods
changed the caption accuracy scores differently for (i) all images,
and (ii) each image set with different caption quality (RQ3). We took
image exploration approaches as the factors (Facebook vs. Seeing
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Figure 3: Images used during the user study sessions, their AI-generated captions, and the errors in those captions.

AI vs. ImageExplorer) and compared the changes in accuracy scores
using one-way ANOVA with follow-up Tukey’s HSD post-hoc tests.
Besides differences between three systems, we also want to un-
derstand the specific differences between touch- and text-based
explorations (RQ2). We took interaction modalities (touch vs. text)
as factors and compare the changes in accuracy scores for (i) all
images, and (ii) each image set using Student’s t-test (one-tail). We
used one-tail analysis because we hypothesized that touch is more
effective than text-based explorations.

Besides caption accuracy ratings, we also review the differences
on the level of participants’ confidence on their judgements of

the ratings (1 = “very unconfident”, 7=“very confident”). For pre-
exploration stage, we took caption quality as factor (A, B, C) and
compared the measurement of confidence level using one-way
ANOVA with follow-up Tukey’s HSD post-hoc test. In addition to
investigating if caption quality affect their confidence level before
exploration, we also took completion of exploration as factor (before
vs. after) and compare the measurement of confidence level using
Student’s t-test (two-tail), in order to understand if any form of
exploration affect the confidence of their determination on caption
accuracy. Note that the alpha level of all our conducted tests was
0.05. We took 7-point Likert scale as approximating equal intervals
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and thus analyzed them using ANOVAs or t-tests. Overall, our
results were consistent when validated with non-parametric tests.

For our qualitative analysis, two members of the research team
analyzed the study sessions using thematic analysis as described
by Braun and Clarke [7]. We first created written descriptions of
participants’ app usage behavior from the study video recordings,
e.g., how often they re-read information or how they used touch
to explore an image. These behavioral descriptions, along with
study transcripts, were treated as data items to identify trends in
participant feedback. We first individually read and familiarized
ourselves with the data. We performed an open coding of the data
independently, then adjusted the codes as a group until sufficient
agreement was reached. We focused on identifying themes relating
to participants’ exploration strategies, accuracy rating reasoning
and image interpretations, and overall app preference reasoning.

4 RESULTS
4.1 Pre-Exploration Caption Accuracy Ratings
We first analyzed the initial perceived accuracy scores (1-7, 7 means
very accurate) that participants gave to the generated captions be-
fore explorations (Figure 4). For images with captions of quality
levels A (Mostly Accurate), B (Partially Inaccurate), or C (Inaccu-
rate), participants gave the following average ratings: 𝜇𝐴 = 4.78
with 𝜎𝐴 = 1.47, 𝜇𝐵 = 5.42 with 𝜎𝐵 = 1.11, and 𝜇𝐶 = 4.06 with
𝜎𝐶 = 1.58. Our statistical results showed that there were signifi-
cant differences between the accuracy ratings among three quality
levels (𝐹 (107) = 8.235;𝑝 = 0.0005 < 0.05). Specifically, partici-
pants gave significantly higher ratings on caption quality B than
C (𝑝 = 0.001 < 0.05), but no difference was found between A vs. B
(𝑝 = 0.14) and A vs. C (𝑝 = 0.08). For the confidence level on the
ratings they provided, our results showed that participants held
similar confidence on their judgements regardless of caption quality
(𝐹 (105) = 0.064; 𝑝 = 0.94), with relatively high level of confidence
on image set A (𝜇𝐴 = 6.09; 𝜎𝐴 = 1.00), B (𝜇𝐵 = 6.06; 𝜎𝐵 = 0.97)
and C (𝜇𝐶 = 6.00; 𝜎𝐶 = 1.04). Overall, the average pre-exploration
accuracy ratings were not high (from 4.06 to 5.42) and did not fully
reflect the ground-truth quality groupings, indicating that while
participants attempted to rate the captions’ accuracy as well as
possible, ultimately, they were unsuccessful in determining which
captions were accurate and which were not. This suggests that
information beyond just the caption is necessary to empower blind
users to judge the correctness of AI-generated captions.

Participants’ strategies for rating the generated captions gen-
erally fell into two categories: (i) analyzing the grammar of the
captions, and (ii) judging captions based on prior knowledge.

4.1.1 Caption Grammar. Participants often used grammatical com-
ponents of the caption to judge its accuracy. For example, the use
of the word “probably” in captions caused participants to express
skepticism towards the accuracy of those captions: “It already says
‘probably.’ Given how the system is not sure, how can I be?” (P11).
Microsoft Cognitive Services [9] includes the word “probably” in
captions where it has lower confidence, which was common in our
image set (in four (1C, 2A, 3A, and 3C) of the nine images). This is
consistent with prior findings by MacLeod et al. [35]. Additionally,
grammatical errors in captions caused participants to view them as

Figure 4: Pre-exploration accuracy ratings for each image
quality level. Participants gave significantly higher ratings
for images of quality B as compared to images of quality C.

less accurate. For example, the caption for image 1B is “A group of
dog running on grass.” This confused many, including P8, who said
“Maybe it is nitpicking grammar thing, but it should be ‘a group of
dogs.’ Now I am not sure if there are many dogs or just one dog.”

4.1.2 Prior Knowledge. Participants also relied on their prior knowl-
edge of the world, AI, Facebook, and Seeing AI when initially rating
the captions. Captions that seemed realistic generally were per-
ceived as more accurate. For instance, image 2C is captioned “a cat
sitting on a chair,” which P1 described as likely accurate because:
“Cats do sit on a chair. When I first heard the caption, I thought of
a cat sitting on top of an easy chair.” Likewise, captions that did
not sound reasonable were perceived as less accurate. For example,
image 1C is captioned “probably a group of people walk on a bench,”
which P3 described as inaccurate because: “you can’t really walk on
a bench. I can sit on a bench, but not walk on a bench.”

Participants also occasionally used their prior experiences with
AI-generated captions in general to reason about accuracy. Par-
ticipants rated captions as correct if they believed it contained a
distinct object that would be difficult to mistake for something
else. For example, P3 noted: “Giraffes and zebras are so distinct, so
it couldn’t be confused with something else, like a dog or a cat.” Ad-
ditionally, participants who had experience using either Facebook
or Seeing AI were slightly biased, and occasionally rated captions
based on the quality of their prior experiences. For example, P4,
who uses Facebook every few days, said “Most of the time Facebook
gives good captions.”

4.2 Exploration Time And Strategies
Our results demonstrated that there was a significant difference for
users’ exploration time among three different systems (𝐹 (107) =
33.07; 𝑝 < 0.0001), shown in Figure 5. Specifically, participants
spent significantly more time on ImageExplorer than the two other
systems (𝜇 = 168.33𝑠 , 𝜎 = 89.83; 𝑝 = 0.001 < 0.05). Participants also
spent significantly more time on Seeing AI (𝜇 = 87.83𝑠 , 𝜎 = 57.33𝑠)
than Facebook (𝜇 = 48.69𝑠 , 𝜎 = 28.26) (𝑝 = 0.027 < 0.05). By
analyzing participants’ strategies when exploring the images using
each of the three systems, we found that when using Facebook,
all twelve participants first read through the textual information
from top to bottom. Once they reached the end of the list of text,
four of them listened to all of the information again, this time from



ImageExplorer CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Figure 5: Average image exploration time when using Face-
book, Seeing AI, and ImageExplorer.

bottom to top, while the rest did not explore further. On the other
hand, when using the two touch-based systems (i.e., Seeing AI
and ImageExplorer), most participants moved randomly without
a strategy, with only two participants occasionally moving more
strategically in a circular or zig-zag motion.

While a lack of strategy could partially explain the difference in
exploration time, the touch-based systems Seeing AI and ImageEx-
plorer both provide additional information (e.g., object location and
hierarchies) that take more time to explore. Additionally, some par-
ticipants including P3mentioned that with the touch-based systems,
they tried to build up a picture of the image in their head: “... with
touch, you can get a little bit of information about what’s where, and
make a more accurate mental picture.” Though this approach poten-
tially helps with error identification, it could also cause the increase
in exploration time, as it increases the mental load of exploration.

4.3 Determining Caption Correctness
4.3.1 Effects of Exploration on Caption Judgement. To answer RQ1,
we first need to know whether image exploration can affect partic-
ipants’ judgement on image caption accuracy regardless of both
the quality of the captions and the systems used. To achieve this,
we compared all of the pre-exploration accuracy ratings (𝜇 = 4.75;
𝜎 = 1.51) with all of the post-exploration accuracy ratings (𝜇 = 3.39;
𝜎 = 1.97). The results showed that there was a significant change
in accuracy ratings (𝑡 (212) = 5.65; 𝑝 < 0.0001), which indicates
that explorations of any kind made participants change their ini-
tial accuracy scores regardless of any caption quality (Figure 6).
Regarding if exploration changed the confidence level on their accu-
racy judgement, our results showed that participants did not really
change the confidence of their own judgement when comparing
the ratings before (𝜇 = 6.05; 𝜎 = 1.00) and after (𝜇 = 6.19; 𝜎 = 1.00)
exploration (𝑡 (212) = 1.02;𝑝 = 0.31).

We then analyzed whether exploration changed participants’
accuracy ratings for each image caption quality, regardless of the
system used. To accomplish this, we first separated both the pre-
and post-exploration data into three chunks based only on image
caption quality, each containing accuracy ratings for image quality
level A (𝜇𝑝𝑟𝑒 = 4.78; 𝜎𝑝𝑟𝑒 = 1.47; 𝜇𝑝𝑜𝑠𝑡 = 4.20; 𝜎𝑝𝑜𝑠𝑡 = 1.72),
B (𝜇𝑝𝑟𝑒 = 5.14; 𝜎𝑝𝑟𝑒 = 1.32; 𝜇𝑝𝑜𝑠𝑡 = 3.31; 𝜎𝑝𝑜𝑠𝑡 = 1.98), and C
(𝜇𝑝𝑟𝑒 = 4.33; 𝜎𝑝𝑟𝑒 = 1.62; 𝜇𝑝𝑜𝑠𝑡 = 2.67; 𝜎𝑝𝑜𝑠𝑡 = 1.90). We found
that there was a significant difference in scores before and after
explorations for caption qualities B (𝑡 (70) = 4.37; 𝑝 < 0.0001) and C

Figure 6: Pre- and post-exploration accuracy ratings for all
images, and for images of each quality level.

(𝑡 (69) = 4.91; 𝑝 < 0.0001), but there was no significant difference in
scores for A (𝑡 (69) = 1.50; 𝑝 = 0.07), shown in Figure 6. This result
indicates that image exploration systems did help blind users better
judge the correctness of captions, thus significantly decreased their
scores for images with lower quality captions (B and C) but did
not significantly change their scores for images with higher quality
captions (A) after exploration.

4.3.2 Effects of Each System on Caption Judgement. We then ex-
amined for each system, whether explorations affect participants’
accuracy ratings regardless of caption qualities. On average, par-
ticipants changed their ratings the least when using Facebook’s
text-base explorations (𝜇 = −1.11;𝜎 = 1.31). When comparing the
two touch-based systems, participants, on average, changed their
ratings less when using ImageExplorer (𝜇 = −1.34; 𝜎 = 2.14) than
Seeing AI (𝜇 = −1.60; 𝜎 = 1.57). However, there was no significant
difference in change of accuracy ratings between the three systems
statistically (𝐹 (105) = 0.71; 𝑝 = 0.49). Still, it is interesting to note
that no matter which system participants used, they, on average,
rated the accuracy of the captions to be lower after exploring.

We further analyzed for each caption quality, whether explo-
ration with each of the three systems changed participants’ accu-
racy ratings differently. We report the average change in accuracy
ratings with standard deviation in parentheses as follow:

• Image Caption Quality A: Facebook: -0.67 (1.07); Seeing
AI: -1.00 (1.81); ImageExplorer: 0.00 (1.61).

• Image Caption Quality B: Facebook: -1.42 (1.51); Seeing
AI: -1.58 (1.08); ImageExplorer: -1.75 (2.34).

• Image Caption Quality C: Facebook: -1.33 (1.30); Seeing
AI: -2.36 (1.63); ImageExplorer: -2.17 (1.99).

Here, we again computed and compared the changes in scores,
rather than the raw scores. Results indicate that there was no
significant difference in change of accuracy ratings across the
three different systems for the three image caption quality lev-
els A (𝐹 (34) = 1.27;𝑝 = 0.30), B (𝐹 (35) = 0.11;𝑝 = 0.89), and C
(𝐹 (34) = 1.26;𝑝 = 0.30). However, the number of accurate explana-
tions as to why the caption is correct or incorrect differed across
the three systems. We define a correct explanation as a reasoning
that describes which part of the caption is correct or incorrect and
the image content with high accuracy (e.g., P3 said “Well, because
it’s a book and not a box. But a book can be in the shape of a box, so.”
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Figure 7: Number of correct explanations participants were
able to give about image content, with each system and for
each image quality level.

after exploring image 2C). The three systems elicited the following
number of correct explanations from our participants (Figure 7):

• Facebook: A: 3/12 B: 1/12 C: 1/12
• Seeing AI: A: 3/12 B: 7/12 C: 5/11
• ImageExplorer: A: 6/11 B: 8/12 C: 6/12

By reviewing the number of correct explanations, it is apparent
that Seeing AI did better than Facebook, while ImageExplorer did
better than both. Facebook elicited the least number of correct
explanations due to a lack of detail. For instance, for image 3B,
Facebook did not provide any information about the chairs or the
table, which led participants to assume that the cat is sitting on a
cabinet. Seeing AI provided spatial information, which P6 used to
find out that the cat is sitting on top of a dining table and not a chair
in image 3B. ImageExplorer not only provided spatial information,
but also provided much more fine-grained information than Seeing
AI, allowing P11 to describe image 2A as “An image of a bed in the
middle of a room with a white pillow and blue sheets with one chair
to its left and one handbag on the floor to its right.”

4.4 Touch- vs. Text-Based Exploration
To answer RQ2 and better understand the differences between
touch- and text-based image exploration systems, we further con-
ducted both quantitative and qualitative analysis to directly com-
pare the two types of systems. Quantitatively, our results show that
for image caption quality C (inaccurate captions), the touch-based
systems made participants decrease the accuracy ratings signif-
icantly more (𝜇 = −2.26, 𝜎 = 1.55) than the text-based system
(𝜇 = −1.33, 𝜎 = 1.25) (𝑡 (34) = 1.6; 𝑝 = 0.044 < 0.05), indicating that
touch interactions helped raise participants’ skepticism towards
incorrect captions. However, for images with partially inaccurate
captions (image caption quality B), the touch-based systems did
not make participants change their accuracy scores (𝜇 = −1.67,
𝜎 = 1.04) significantly when compared with the text-based system
(𝜇 = −1.42, 𝜎 = 1.44) (𝑡 (34) = 0.37; 𝑝 = 0.34). Similar results could
also be found for images with mostly accurate captions (image
caption quality A) when comparing the change in scores of the
touch-based systems (𝜇 = −0.52, 𝜎 = 1.74) with the text-based
system (𝜇 = −0.67, 𝜎 = 1.03) (𝑡 (33) = 0.26; 𝑝 = 0.38).

Participants also described the pros and cons of both text-based
and touch-based systems. Participants who found the text-based
system helpful reasoned that (i) it is quick and easy to use because it
relies on the swipe gesture (5/12 participants), (ii) it takes less effort
to locate the information (2/12), and (iii) there is a smaller chance
of missing an available information (2/12). Those that disliked the
text-based system said (i) text cannot provide spatial information
such as absolute and relative locations, and size information (5/12),
and (ii) text provides very little information overall (4/12). On the
other hand, participants who liked the touch-based systems rea-
soned that (i) it provides spatial information such as absolute and
relative locations, and size information (5/12), (ii) it provides a lot
of information (3/12), and (iii) it promotes a sense of autonomy
(3/12). Those that disliked the touch-based systems said (i) touch
takes longer (2/12) and (ii) it is difficult to locate all of the elements
in an image (2/12).

4.5 Single- vs. Multi-layered Exploration
For touch-based image exploration systems, we sought to under-
stand the differences between presenting information in a single
layer (e.g., Seeing AI) and multiple layers (e.g., ImageExplorer)
(RQ3). As shown in Section 4.3, there was no quantitative differ-
ence between the change in scores of all systems. Even though
participants change their ratings on caption quality similarly, as
pointed out in Section 4.3.2, ImageExplorer did enable more correct
explanations (20/35) than Seeing AI (15/35), implying that ImageEx-
plorer might have a better chance to empower users to make better
judgements on the actual caption quality. Furthermore, participants’
provided feedback demonstrated notable differences between the
two touch-based systems.

Specifically, half of the participants expressed that ImageExplorer
with multi-layer hierarchy provided more information than Seeing
AI with only single-layer descriptions. For instance, P6 found it
helpful to know that the table is a wooden table in image 3B. On the
other hand, P5 commented that sometimes ImageExplorer provides
too much information. For example, it might not be necessary to
know the exact number on the motorcycle in image 1A. While
providing a lot of detail seem to help participants judge the cap-
tion accuracy, balancing between providing a lot of information
and filtering out useless information still remains a challenge. Be-
sides additional information, nine of the participants also found
the hierarchical presentation coupled with double tap functionality
useful since it not only helped them gain additional information
in an organized way, but also gave users the autonomy to choose
whether to view the additional information. For example, P12 noted:
“I like going into each of the objects. By having a description and then
digging down to get more information, the information isn’t crowded.
For example I want to know more about the book, but not the plant.”
While hierarchies seem effective, the interactions may need to be
carefully design to reduce users’ mental effort. For instance, P4 par-
ticularly disliked double tapping to access the second layer, because
“it was just one extra step that you had to go through.” P6 mean-
while suggested that using touch and hold gesture could potentially
reduce both physical and mental effort for the users.

Besides the differences between single- and multi-layered explo-
ration, participants also mentioned some specific feature differences
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Figure 8: Post study rankings of Facebook, Seeing AI, and ImageExplorer for ease of use, helpfulness, and overall preference.

between ImageExplorer and Seeing AI including (i) explored ele-
ment indication, and (ii) responsiveness. Three participants found
the feedback for whether an element was explored helpful since
it allowed them to focus on navigating the unexplored area. P9
noted: “It was helpful to know the amount of objects, and if it was the
same object. So I didn’t have to wonder if it was the same bench”, and
they expressed disappointment towards Seeing AI for not having
this feature: “...it doesn’t tell you if you’re back in an area you’ve
already explored, you just have to know based on touch and spatial
layout, which is difficult.” With regard to the responsiveness of
the system, three participants felt Seeing AI was more responsive
than ImageExplorer due to the differences in their audio feedback
design. Specifically, Seeing AI plays a continuous melody when
not touching any element and plays a loud “ding” when entering
an element. On the other hand, ImageExplorer plays a monotone
when not touching any element and does not play a loud “ding”
when entering an element. This was done in an effort to provide
the same information in a more subtle manner, but might lower
the perceived responsiveness of ImageExplorer. As described by
P8, “The challenge with ImageExplorer is knowing whether or not it
is working because of lack of feedback on empty space.”

4.6 System Preferences
As shown in Figure 8, 11 out of 12 participants found Facebook to
be the easiest to use. This is because it is easier and faster to retrieve
information from scrolling through a list of text than dragging a
finger across the screen hoping to find an element. This consensus
is best summarized by P3: “I think just the quickness from Facebook
is good. I was just able to scroll through text and that gave me all
the context I needed for the photo.” Additionally, P5 supplemented
this explanation by saying: “It was frustrating to explore the screen
hoping to land on something. It almost became a game to find the
other elements in the image. I became more concentrated in finding all
of the things in the image than understanding the image.” Findings
from the qualitative data indicates that using a text-based system
is more efficient than using a touch-based system, thus was the
easiest to use.

On the other hand, 9 out of 11 participants (omitted one par-
ticipant because they rated all three systems to be equal) found
ImageExplorer to be the most helpful when judging the accuracy of
the auto-generated captions. All of them agreed that ImageExplorer
provides the most amount of information, including P10, who said
“ImageExplorer was the most detailed, so it was helpful. Facebook and
Seeing AI are about the same, but Facebook is easier to use. Both seem

to only capture the main elements in the image,” and P7, who said
“Facebook and Seeing AI are not detailed enough.” Here, detailedness
of the systems tend to correlate to their helpfulness. Additionally,
6 of those 9 participants appreciated ImageExplorer’s hierarchy
and double tap features because these features (i) showed which
sub-elements belong to which main elements in the image, and (ii)
broke down complex images into smaller, more manageable chunks.
For instance, P9 found ImageExplorer to be most helpful because
“It allowed you to see what things were part of another thing, like that
it was the bus’s window and not some other window.” Additionally,
P11 said “The good thing about ImageExplorer was that you had a
hierarchy to it. Objects that are complex can be divided into categories.
It would not read the entire image, but focus on just one object. This
is good especially for large images or complex images. The depth of
layers is a research question. I don’t suggest 7 hierarchies, but the
2 level hierarchy was good. I knew I was looking at just one object.”
The collected qualitative data indicates that the participants found
ImageExplorer to be the most helpful because it provided a lot of
information in a structured and hierarchical manner.

Furthermore, we asked participants to provide a ranking for
their overall preferences of the three systems. Out of the 12 partici-
pants, 5 chose Facebook, 5 chose ImageExplorer, and 2 chose Seeing
AI (see Figure 8). Participants who preferred Facebook prioritized
ease of use over detailedness, while those who preferred ImageEx-
plorer thought the opposite. This suggests that blind users need
both ease of use and detailedness when exploring an image. As a
solution to this issue, 7 out of 12 participants suggested a system
that merges features of Facebook and ImageExplorer, including
P12, who specifically stated: “If I can get my Facebook overview in
ImageExplorer, that would be my favorite.” Finally, Seeing AI was
ranked the lowest by 6 out of the 12 participants because it was
not as easy to use as Facebook, but also not as detailed and helpful
as ImageExplorer. These two characteristics seem to be the main
factors that determined users’ system preferences.

5 DISCUSSION AND FUTUREWORK
Our work demonstrates the potential for providing additional and
structured information to help BVI users have better image under-
standing. We include a reflection on limitations and future direc-
tions for research in building more accessible and usable image
exploration systems.
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5.1 Mental Load of Exploration
When comparing a text-based system with touch-based systems,
there is a tension between mental effort and image understanding.
A text-based system requires less mental effort than a touch-based
system because a text-based system is simpler to interact with and
places less importance on users’ abilities to recall the explored in-
formation. This is because a list of text can easily be read linearly
using typical screen reader gestures, while a touch interface neces-
sitates more careful interactions to traverse through all of the image
elements. This difference led participants to eventually express frus-
tration when using a touch-based system because they sometimes
could not locate every element in an image, even after spending a
lot of time with it. This mental effort could also potentially vary
based on a participant’s previous experience with tactile graphics,
and future work could investigate this.

Additionally, when forgetting a piece of information (e.g., title
of a book in image 2C), participants who were using a touch-based
system often could not re-locate that information quickly, while
those who were using a text-based system were able to with ease.
On the other hand, when using a touch-based system, participants
were able to explore an image more thoroughly, which encouraged
skepticism towards incorrect image captions and allowed partici-
pants to provide more accurate and detailed explanations as to why
the captions are correct or not. Notably, touch provides relative
positions of objects, which empower blind users to form a mental
model of an image.

Whether the value of image understanding triumphs the cost
of mental effort depends on the amount of available time and im-
portance of the images users want to explore. Participants said
that they would opt to using a touch-based system whenever they
have the time to thoroughly understand an image. This notion is
best summarized by P6 who said “I think it would be helpful to
be able to have a quicker or speedy version where you have text...
and then if you want to engage with it more on your own terms or
have some time, you would use the touch approach.” Additionally,
personal importance of an image seems to affect the willingness
to spend additional time with that image. For instance, a picture
taken together with family members hold much more value than
an image of a park. Interestingly, both P1 and P8 who mentioned
that they are cat owners spent more time exploring image 3B than
the majority of the participants.

Ultimately, the decision to sacrifice mental effort for image un-
derstanding depends on the user and their situation; this hints at
a system that allow its users to have the autonomy to choose be-
tween mental effort and understanding by adapting to the amount
of information users want.

5.2 Practicality of Exploration
Our goal in this work was to better understand how image explo-
ration could be used as a tool for finding errors in auto-generated
captions. Towards this goal, we chose to evaluate three real-world
systems, each with their own limitations. Although exploration
systems generally presented more accurate information than natu-
ral language captions, they still occasionally presented incorrect
or incomplete information. While participants were not informed
of inaccuracies in the exploration systems so as not to introduce

bias, these inaccuracies could still influence their ratings of each
caption and their understanding of the images. Generally, partici-
pants’ previously used intuition strategies for assessing accuracy
(assessing caption grammar and using prior knowledge of reality)
did not apply to the exploration systems. Future work could further
investigate how people make judgements of correctness for simi-
lar pieces of information (i.e., if given two similar captions, which
one do they trust more). Additionally, future work could research
generally what information helps users best judge accuracy.

In the future, image exploration systems might also help create
better captions. By leveraging exploration patterns, captions might
be generated that contain information that users may deem more
relevant. Can we leverage the interaction data (path and order, how
long they dwell) to provide training data to make caption mod-
els better and more interactive? Furthermore, if blind users are
providing their own images for exploration, can we leverage their
contextual understanding of the image (such as capture time, loca-
tion, intention, and camera framing) to enable blind photographers
to generate and label their own image datasets to train AI-based
systems, e.g., personal object recognizers?

5.3 Next Iteration of ImageExplorer
5.3.1 Combining Facebook and ImageExplorer Interfaces. Towards
the end of the study, as an open-ended question we asked partici-
pants to design their ideal image exploration system. There was a
consensus among 8 of the 12 participants that they want a system
that could be flexible to the amount of information that they want
at a given time. When they are not particularly interested in an
image, they could ideally just read the high level information, and
when they are really interested in understanding an image, they
could receive much more details about it. Six participants further
commented that they want a system that can toggle between Face-
book’s text-based summary and ImageExplorer: a text summary
for quick exploration, layers for flexible information intake, and
touch for spatial information when needed.

Such a system could first present information about an image
in a text-based manner to enable quick and easy exploration of
an image. The textual information could be grouped into different
categories, much like how Facebook presents its results, though
the exact categories could potentially be improved. Participants
appreciated the “position information,” “size information,” and “ele-
ments by category” categories that Facebook provided. While they
did not suggest changing the latter two categories, for “position
information,” they wanted the information to be grouped into more
subcategories beyond just “left,” “right,” and “center.” For instance,
P11 wanted to know elements that are located in the upper right
corner of their screen. Based on similar comments, we suggest
presenting position information using a three-by-three grid. Ad-
ditionally, participants wanted two more categories: “color” and
“count.” A “color” category could summarize the colors of each ele-
ments in an image, while a “count” category could summarize the
total number of each elements in an image. While these two pieces
of information were presented to participants as part of the other
categories, participants wanted these to be organized separately
since they were crucial to understanding an image further.
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After briefly exploring an image for more information, if par-
ticipants want to know the spatial information in an image, they
should be able to switch to a touch-based interface, similar to that
in ImageExplorer. The majority of participants stated that spatial
information such as absolute and relative positions are essential to
understanding an image and identifying errors in its caption. For
example, it is much easier to find out that image 3B’s caption is
incorrect using touch than text because the object relationship is
embedded in the spatial layout of the image. While a text-based
interface is easier to use, a touch-based interface provides spatial
information, which is difficult to convey through text.

Finally, participants wanted the touch-based interface to bemulti-
layered similar to ImageExplorer such that they can not only get
a lot of information in an organized manner, but also explore the
composition of complex objects and scenes. For instance, partici-
pants were able to confirm that image 2C contained a black book
and not a box because its second layer information included text.

A key advantage of this system is that users would have the
freedom to choose whether to access more information or not. Some
may want to explore an image briefly with hopes to understand
it at a basic level, while others may want to explore elements in
detail to create a rich mental model of the image. Therefore, this
next iteration of ImageExplorer is necessary to support different
users and their use cases.

5.3.2 Providing Even More Information. ImageExplorer provided a
a range of information about an image by strategically combining
the results of multiple off-the-shelf deep learning models, which
participants appreciated. However, every participant commented
that they would prefer even more information to fully understand
the images. We compiled commonly mentioned details that partici-
pants considered helpful or necessary in understanding images:

• Color (e.g., What is the color of the cat in image 2C? What
is the color of the book in image 3A?)

• Size (e.g., What is the size of each of the dogs in image 1B?)
• Count (e.g., What is the exact number of dogs in image 1B?
What is the exact number of zebras and giraffes in image
2B?)

• Action (e.g., Is motorcycle in image 1A being driven by the
police officer, or is it parked? What are the people doing in
image 1C?)

• Background Information (e.g., Are the animals in image 2B
in a cage? What else is in the picture besides a bed in image
2A? What else is in the image besides a police officer and a
motorcycle in image 1A?)

• Type (e.g., What kind of a cat is the cat in image 2C? What
kinds of dogs are in image 1B?)

As mentioned in Section 4.6, the level of detail in a caption might
affect its perceived accuracy. Therefore, providing more details by
incorporating more context-aware and generalized vision-language
models [55] and presenting them both textually and spatially could
further encourage users’ skepticism towards image captions.

6 CONCLUSION
In this work, we explored how various image exploration modalities
could support BVI people in identifying errors in auto-generated
captions. We presented a comparison of three image exploration

systems, including ImageExplorer, a design probe that allows BVI
users to gain multi-layered image information through touch. Our
results indicate the usefulness of touch and layers in increasing
image understanding, and demonstrate that additional quantities of
information could be useful in enabling BVI users to assess errors
in captions. Overall, ImageExplorer is a step towards understanding
the role additional information plays in image interpretation, and
for improving the design of future image understanding systems.
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