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TEMPURA

Model reasoning output:
Before cleaning the shrimp, 
ingredients and utensils are 
gathered, ensuring a smooth 
transition from introduction 
to preparation and 
maintaining video clarity.

Prediction:
"Gathering Ingredients"

Prediction
"Coating Shrimp 

with Batter"

Model reasoning output:
Before frying, the shrimp 
must be coated with batter.  
After cleaning the shrimp, 
the next logical step is 
coating it in batter to 
ensure a crispy texture.

The video begins with an 
introduction to a plate of 
freshly fried shrimp tempura.

Removing the spiky part of 
the shrimp tail, making 
shallow incisions along its 
back, and pressing it down 
to straighten it for frying.

The battered shrimp is 
deep-fried in hot oil, 
achieving a crispy 
golden-brown texture.

TEMPURA 
can step-by-step infer 

unseen 

TEMPURA 
can segment untrimmed 
video and describe them.

What happened?

VER Dataset
500K Untrimmed Video
Dense Event Description

Masked Event Reasoning

Fig. 1: Our model, TEMPURA, is trained using a two-stage process for video understanding. The model
first infers event structures and causal relationships by filling in missing details and reasoning about event
sequences (e.g., recognizing that shrimp must be battered before frying). Second, it is learned to partition video
into non-overlapping events and describe them in details. To achieve TEMPURA, we propose a new large-scale
dataset consisting of 500k videos with dense event captions.

Understanding causal event relationships and achieving fine-grained temporal grounding in
videos remain challenging for vision-language models. Existing methods either compress video
tokens to reduce temporal resolution, or treat videos as unsegmented streams, which obscures
fine-grained event boundaries and limits the modeling of causal dependencies. We propose
TEMPURA (Temporal Event Masked Prediction and Understanding for Reasoning in Action),

https://andy-cheng.github.io/TEMPURA/
https://huggingface.co/datasets/andaba/TEMPURA-VER
https://github.com/Andy-Cheng/TEMPURA
https://arxiv.org/abs/2505.01583v1


TEMPURA: Temporal Event Masked Prediction and Understanding for Reasoning in Action

a two-stage training framework that enhances video temporal understanding. TEMPURA first
applies masked event prediction reasoning to reconstruct missing events and generate step-by-step
causal explanations from dense event annotations, drawing inspiration from effective infilling
techniques. TEMPURA then learns to perform video segmentation and dense captioning to
decompose videos into non-overlapping events with detailed, timestamp-aligned descriptions.
We train TEMPURA on VER, a large-scale dataset curated by us that comprises 1M training
instances and 500K videos with temporally aligned event descriptions and structured reasoning
steps. Experiments on temporal grounding and highlight detection benchmarks demonstrate that
TEMPURA outperforms strong baseline models, confirming that integrating causal reasoning with
fine-grained temporal segmentation leads to improved video understanding.

1. Introduction

Recent video Large Multi-modal Models (LMMs) [1, 21, 26, 27] have extended Large Language
Models (LLMs) with video understanding capabilities. However, understanding and reasoning
over the temporal relationships in long videos remains challenging for current models, particularly
when analyzing events over time. Recent methods compress video tokens by consolidating key
features from adjacent frames [18, 40, 45], which reduces computational and memory costs but leads
to fine-grained temporal information loss. Some other works construct synthetic datasets and develop
training pipelines to improve temporal reasoning. For example, LLaVA-Video [55] curates large-scale,
high-quality video data for video-language instruction fine-tuning, and TPO [24] uses contrast training
pairs with preference learning to steer models toward contextually appropriate responses. However,
these approaches still struggle to capture fine-grained event dependencies and achieve long-video
temporal understanding.

To address these limitations, we introduce TEMPURA (Temporal Event Masked Prediction and
Understanding for Reasoning in Action), a two-stage training pipeline that unifies dense event segmen-
tation with masked event prediction to build robust video temporal understanding LMMs. In the
first stage, TEMPURA enhances video reasoning by teaching the model to infer missing events and
generate step-by-step causal explanations. Drawing inspiration from the Fill-in-the-Middle (FIM)
paradigm [2, 39], our training pipeline masks segments of dense video captions and leverages a strong
LLM to predict pseudo-events and associated reasoning steps. This training objective maximizes
the likelihood of reconstructing both the absent event and its causal narrative from the surrounding
context, thereby aligning vision-based inference with language-based reasoning. The second stage
focuses on video segmentation and dense captioning, where the model learns to partition untrimmed
videos into non-overlapping events with precise start and end timestamps, each enriched with detailed
descriptions. This stage eliminates the need for auxiliary temporal encoders by directly grounding
each event in its corresponding video segment.

To support TEMPURA’s training pipeline, we introduce VER, a large-scale dataset constructed
through a multi-step event annotation pipeline (see Figure 4). The pipeline begins by filtering dynamic
content from YT-1B [50] and categorizing videos into 10 common categories using Llama-3-72B [7]
while discarding videos dominated by interviews, lectures, or speeches. We then applied GPT-4o [16]
to segment each video by sampling frames at 1 FPS and arranging them into chronological frame
sequence image, which facilitates accurate event boundary detection and dense caption generation. A
temporal coherence check further refines the data by filtering out events lacking causal relevance, and
a masked event prediction subset reinforces the training signal for temporal inference. The resulting
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Table 1: Video Dataset Characteristics Comparison across mainstream benchmarks.

Dataset Video Hours Events per Video Events per Minute Coverage Event Details Temporal Reasoning

Youcook2 [58] 175 7.7 1.5 Sparse ✓ ×
Charades [9] 476 6.8 2.3 Sparse ✓ ×
ActivityNet Captions [19] 849 3.6 2.0 Sparse × ×
Finevideos [8] 3,425 - - Dense ✓ ×
ViTT [15] 541 7.1 1.5 Sparse ✓ ×
Moment-10M [30] 7,260 22.5 3.3 Dense ✓ ×
VER (Ours) 18,329 10.5 6.0 Dense ✓ ✓

VER dataset comprises 500K untrimmed videos spanning a total duration of 18K hours, providing
dense, timestamp-aligned event captions and structured reasoning that capture fine-grained temporal
dynamics across diverse video types.

Our experiments demonstrate the effectiveness of TEMPURA in video temporal understanding
tasks. On the Charades-STA benchmark [9], TEMPURA achieves a mIoU of 39.2, outperforming the
baseline by 6.3 points. On the QVHighlights dataset [20], it attains a HIT@1 score of 51.7, surpassing
the baseline by 6.9 points. Ablation studies reveal that sequentially applying masked event prediction
followed by dense video captioning is crucial for unlocking fine-grained temporal reasoning, thereby
enhancing the model’s performance in video understanding.

In summary, TEMPURA advances video understanding by integrating dense video captioning
with structured causal reasoning to capture fine-grained temporal dynamics in long videos. By
decomposing videos into non-overlapping events with precise timestamps and enabling the model
to infer missing events through masked prediction, TEMPURA goes beyond holistic processing to
achieve robust temporal grounding and causal inference. Our contributions are twofold:

• We develop TEMPURA, a novel training pipeline that leverages masked event prediction to
reconstruct missing events with step-by-step causal explanations, and then refines temporal
grounding via dense event segmentation and captioning.

• We curate VER, a large-scale dataset of 500K videos spanning 18K hours, annotated with diverse,
timestamp-aligned event captions and structured reasoning across 10 common video categories.

2. Related Work

2.1. Video Large Multi-modal Models

Researchers have developed video Large Multi-modal Models (LMMs) that address a broad range
of video understanding tasks and its application [56, 57]. Many models integrate vision foundation
models [34, 52] with Large Language Models [3, 7, 33] to enhance video question answering. Several
approaches [4, 17, 40, 40, 41, 46, 48] rely on token merging strategies to fuse visual tokens to enable long
video question answering. Models such as LLaVA-OneVision [21] and LLaVA-Next-Interleave [22],
which extend the LLaVA architecture [26] with a simple projector design, demonstrate strong per-
formance across both image and video question answering. The Video-LLaMA series [6, 53] further
incorporates an audio modality, supporting more fine-grained multi-modal video comprehension.
Recent works [11, 13, 36] reveal, however, that many LMMs still struggle with temporal reasoning.
The limited ability to capture the order of events arises from a shortage of temporally structured video
training data and training methods that overlook time causality. To enhance temporal reasoning and
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understanding in LMMs, we propose masked temporal event learning in our training pipeline, which
strengthens models’ ability to predict event order in videos.

2.2. LLM with Reasoning

Recent advancements in LLMs have significantly improved their reasoning capabilities, enabling them
to handle complex multi-step problems across various domains. Latest models like DeepSeek-R1 [10]
involve reinforcement learning during the training process and achieve state-of-the-art performance
across various LLM evaluation benchmarks with its strong reasoning ability. On the other hand,
parallel efforts in LMMs have similarly advanced image-based reasoning, as demonstrated by studies
training the multi-modal models to generate step-by-step solutions for math problems [54] or perform
chain-of-thought reasoning for object localization or visual reasoning [29, 38, 42]. This emphasis on
step-by-step reasoning in static domains naturally aligns with approaches like LLaVA-CoT [47], which
leverages four sequential stages during model inference to guide models in systematically breaking
down problems and delivering more accurate responses. However, despite these advances, the
application of such reasoning capabilities to the video domain, particularly for temporal understanding
across dynamic sequences, remains largely unexplored, with few works developing large multi-modal
models to address these challenges.

2.3. Temporal Understanding with LMMs

Temporal understanding in videos is essential for comprehending event relationships and causal
dependencies, enabling models to interpret actions, anticipate future occurrences, and infer missing
visual events. Video LMMs have been developed to facilitate temporal grounding through timestamp-
based event localization and video captioning. Models such as TimeMarker [5], VTimeLLM [13], and
Momentor [31] enhance video comprehension through adaptive token compression, segment-level
event alignment, and fine-grained moment localization. Additionally, Trace [11], TimeSuite [51], and
TimeChat [37] introduce refined temporal modeling techniques, incorporating structured temporal
embeddings and improved event localization. However, these works primarily focus on timestamp
retrieval and event segmentation, lacking the ability to infer missing events and reason about causal
dependencies between actions. In this work, we address these limitations by incorporating masked
event prediction and structured temporal reasoning, enhancing the coherence of event transitions and
improving long video comprehension, thereby advance the fine-grained temporal reasoning ability of
video LMMs.

3. Method

Understanding and reasoning about video content require the ability to segment a video into mean-
ingful events, establish their temporal order, and infer relationships among them. We define video
reasoning as the capability to: 1) Comprehend video progression by identifying distinct events and
their temporal boundaries, and 2) Analyze event relationships to infer missing or implicit information
based on context and logical flow.

To develop a video LMMs with robust video reasoning capabilities, we propose a structured
training framework comprising two key stages: Masked Event Prediction Reasoning and Video
Segmentation and Dense Captioning. The first stage enables the model to infer missing events and
reason about causality within the video context, while the second stage focuses on enhancing the
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Stage 2: Masked Event 
Prediction Reasoning

LLMDescribe the video into 
non overlapping events. 𝐸!, 𝑇! 𝐸", 𝑇" 𝐸#, 𝑇#𝐸$𝑇$

Vision 
Encoder

b
From, 0.0 to 10.0 seconds, 
<detailed event description 1>
From 10.0 to 32.5. seconds, …
<detailed event description 2>
From 32.5 to 43.0 seconds, …
<detailed event description 3>
…

Model Output Format

Masked Video

Think step by step to 
guess what happen.

a

<think>
[context analysis reasoning steps]
</think>
<answer>
From 32.5 to 43.0 seconds, 
<predicted event description>
</answer>

LLM

Vision 
Encoder

: predicted event description          

Training Stage 1: Masked Event Prediction Reasoning

Training Stage 2: Video Event Segmentation and Temporal Dense Captioning

Fig. 2: Overview of TEMPURA’s two-stage training pipeline. (a) Masked Event Prediction Reasoning: The
model infers missing events by analyzing the masked video context, generating both a textual description and
step-by-step causal explanations. (b) Video Event Segmentation and Temporal Dense Captioning: The model
partitions an untrimmed video into non-overlapping events, each aligned with precise start/end timestamps
and enriched with detailed captions, thereby reinforcing a structured understanding of temporal progressions.

video LMM’s ability to decompose a video into temporally grounded event sequences. Together,
these stages equip the video LMM with a structured understanding of video narratives, improving its
generalization to downstream tasks such as temporal grounding and highlight detection.

3.1. Masked Event Prediction

To enhance the video LMM’s ability to reason from video input, we introduce Masked Event Pre-
diction, a novel training stage that aims to enhance the model’s understanding of event logical
flow, causality, and inductive reasoning with that of a language model. Inspired by Fill-in-the-
Middle (FIM) [2, 39], which is widely used in code and text infilling tasks, we extend this concept to
the video domain. FIM typically trains a model to predict missing content based on preceding and
succeeding contexts. Similarly, we formulate a video event infilling task where the video LMM learns
to reconstruct masked video events through inferred text description.

To enable this capability, we leverage the strong reasoning ability of LLMs to generate pseudo-
events and reasoning steps based on our dense video caption data, detailed in Section 4. Specifically,
we prompt the LLM to infer and construct plausible intermediate events that are masked within a
video sequence, ensuring logical consistency with the surrounding context. As shown in Figure 2a,
we apply segment-level masking to dense video captions and use the LLM to produce pseudo-events
with step-by-step reasoning explanations for the missing segments. These generated pseudo-events
and reasoning steps serve as supervised fine-tuning data for the video LMM, enabling it to align its
video-based reasoning capability with the strong contextual understanding of LLMs. By training the
video LMM on this curated data, we reinforce its ability to infer missing content and establish logical
event progression solely from video input.

Formally, given a masked video input, Vmasked, the training objective is to maximize the likelihood
of predicting the pseudo-event, Ẽ, along with intermediate reasoning steps, R, in a predefined
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structured format:

max
θ

EVmasked

[
Pθ(Ẽ, R | Vmasked)

]
This stage bridges the gap between vision and language-based reasoning by aligning the strong

logical filling ability of the LLM with the video understanding of the video LMM. Making the model
more effective on downstream tasks that require complex video comprehension.

3.2. Video Segmentation and Dense Captioning

Dense video captioning [13, 14, 51] is a crucial task for fine-grained video understanding. The resulting
video events, grounded with timestamps, provide the necessary context for a language model to
establish relationships between events, assisting it in extracting facts and reasoning in response to
queries.

In the second training stage, Video Event Segmentation and Temporal Dense Captioning, we teach
the model to break down a video into non-overlapping events and describe each event in detail. As
illustrated in Figure 2b, we develop the video LMM’s temporal awareness by learning to segment a
video into non-overlapping events, each defined by its start and end timestamps.

We design an instruction, I, to guide the video LMM in transforming a video input, V, into a
structured event sequence, {Ei | 1 ≤ i ≤ N}, where each event is represented by its timestamp and
caption, E = (T, C). Unlike Trace [11], which utilizes extra encoders to model time and saliency
scores, we eliminate these components and instead train the model to ground all video segments
using their enclosing timestamps. This is achieved by leveraging dense video captions from our VER
dataset, which consists of 500K annotated videos. This design choice reduces the need for additional
parameters, making the video LMM more versatile for various tasks while ensuring that it learns the
structural and temporal progression of videos in this initial training stage.

4. VER Data Pipeline

Our TEMPURA training pipeline equips video LMM with three key capabilities: (1) segmenting an
untrimmed video into non-overlapping events while ensuring full video coverage, (2) generating
detailed descriptions for each segmented event, and (3) building a strong understanding of event
logical flow, allowing the model to infer missing events in masked video segments based on contextual
cues.

Existing datasets, as summarized in Table 1, lack large-scale timestamp-aligned dense event
captions [8, 9, 15, 30, 58] and dense video coverage, where all events comprehensively describe the
entire video [8, 30]. To support TEMPURA training, we construct Video Event Reasoning (VER), a
large-scale dataset consisting of 500K untrimmed videos spanning a total duration of 18K hours. Our
dataset provides non-overlapping video events with corresponding detailed descriptions. Compared
to existing datasets, VER offers longer video hours, a diverse range of video types, and fine-grained
event segmentation and captions. Additionally, our TEMPURA masked event prediction training
leverages temporal event reasoning data generated from our dense event captions.

4.1. Dataset Construction

Figure 4 presents our VER data pipeline. Our video data is filtered from YT-1B [50]. Firstly, we remove
static videos following the method in [8] to ensure a richer temporal structure. Next, we categorize
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"Given the input video with the masked segment from 64.0 to 70.0, \n please step-
by-step reason and predict what might happen in the masked time segment based 
on the context of the video and give your answer in the following format: 
<think>[reasoning steps]</think><answer>So the description of the predicted 
event from 64.0 to 70.0 is: <predicted masked event description></answer>"

"<think>The sequence of events shows a detailed process of decorating an egg, 
including drawing designs,… After finalizing the egg decoration and displaying the 
completed egg, it is logical to…. Following this event, the video continues to … 
</think><answer>So the description of the predicted event from 64.0 to 70.0 is: 
The person applies a protective coating to the decorated egg to preserve the 
design.</answer>" 

Masked Event Prediction
Human

GPT

“Partition and identify events by dividing the video into a series of non-overlapping 
segments, determining the start and end time for each event, and arranging them in 
chronological order to ensure complete coverage of all video frames. Each event should 
be accompanied by a detailed description. Please follow the format: From <start time1> 
to <end time1>, <detailed description1>.\n\nFrom <start time2> to <end time2>, 
<detailed description2>.”

“. . . . . . . . . . From 49.0 to 51.0 seconds, shots of a tall ride at the fair, showing its height . . 
. . . . . . . .
From 66.0 to 69.0 seconds, a group of friends is seen sitting at a table, eating and 
enjoying their time at the fair.\n\n. . .. . . . . .From 80.0 to 83.0 seconds, close-up shots of 
a 'Fun Slide' sign, showing the colorful lights.\n\n.From 84.0 to 87.0 seconds, shots of the 
crowd at the fair. . . . . . . . . . . . .”

Dense Event Caption
Human

GPT

Fig. 3: Structured Training Data for Masked Event Prediction and Dense Event Caption

videos into 10 of our predefined common video categories using Llama-3-72B [7] to classify based on
video captions.

To define event boundaries, we apply GPT-4o [16] by sampling the video at 1 FPS and arranging
the frames into frame sequence images. Each frame is indexed with a marker at the top-left corner, and
frame sequence images are ordered chronologically. We then ensure event time boundaries: (1) do not
overlap, (2) cover the entire video, and (3) fall within the video length range. Once event boundaries
are established, GPT-4o is further utilized to generate detailed event descriptions, compiling them
into a structured narrative describing the video’s progression and event sequences.

After filtering and alignment, we retain 500K videos with dense event captions. Each annotated
video contains a series of events, where each event includes an event ID, description, and start and
end timestamps. Figure 3 showcases an example of a video-dense event caption in our fine-tuning
format.

4.2. Masked Event Prediction

To enhance video LMM’s temporal reasoning and event inference, we leverage strong LLMs for causal
understanding and masked event prediction. Specifically, we randomly mask an event from the
dense event caption and employ GPT-4o to analyze the structured captions and predict the missing
event within the masked time window. To ensure that masked events are logically inferable, we filter
out videos with uncorrelated event captions using GPT-4o. We achieve this by prompting GPT-4o
to determine whether a causal relationship exists between event captions, applying step-by-step
reasoning to arrive at a binary decision. During training, we align LMM’s reasoning capabilities with
LLM event inference by fine-tuning on these structured reasoning processes, as shown in Figure 3. We
provide additional dataset statistics, annotation details, and more data examples in the supplementary
material.
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< caption1, start end time > … <captionN, start end time>

Think Step By Step: Do the 
events display a temporal 
relationship?

"False"

Think Step By Step: Predict the masked 
events with temporal coherence?

"True"

- Event
- Description
- Start Time
- End Time

Predicted Events

Mask Randomly Selected Events

Video Event 
Captions of 
500k Videos 
Generated by 
GPT-4o

Video Categories
News

Tech Reviews
Sports & Fitness

Travel & Outdoor Activities
Science & Technology

Educational & How-To Content
Food, Home & Lifestyle

DIY & Creative Arts
Entertainment & Pop Culture

Vlogs & Miscellaneous

Video Pool
Filtering

Categorization

Masked Dense Video Caption

Reasoning Steps

a

b

<caption1, start end time>  …  <Mask/> … <captionN, start end time>

GPT-4o

GPT-4o

Fig. 4: VER Data Pipeline: The pipeline begins by filtering and categorizing a large video pool. GPT-4o then
generates event captions with start/end times, followed by a temporal coherence check that discards invalid
events. For valid events, a subset is masked to form a fill-in-the-blank task, and GPT-4o infers the missing
segments—ultimately creating a dataset for video temporal understanding.

5. Experiments

5.1. Implementation

We adopted Qwen2.5-VL [1] as our base model and conduct training on our collected data. Addi-
tionally, we train our model using DeepSpeed Zero2 [35], with the global batch size is set to 64. To
fine-tune the LLM and MLP adapter, we use a learning rate of 1 × 10−5, while the vision encoder
is trained with a lower learning rate of 2 × 10−6. We observed that the original temporal encoding
scheme of Qwen2.5-VL tends to misalign for fine-grained temporal grounding, especially in longer
videos (see the supplementary material for more examples). To overcome this issue, we introduced
two key modifications. First, we overlay visual timestamps on the upper left corner of each sampled
video frame to explicitly mark the temporal context. Second, we adjusted the temporal encoding in
M-RoPE by assigning a fixed position ID to every sampled frame, ensuring that the model reliably
associates each frame with its corresponding timestamp. We conducted training on 8 NVIDIA H100
GPUs for 1 epoch in each training stage. More training details can be found in the supplementary
material.

5.2. Video Temporal Understanding

Our evaluation focuses on video temporal understanding benchmarks, where the goal is to accurately
localize temporal events within videos based on textual queries. In the following, we detail our
evaluation of two specific tasks: Video Temporal Grounding and Highlight Detection.
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Table 2: Video Temporal Grounding on Charades-STA and Highlight Detection on QVHighlight. The top half
reports models fine-tuned with the benchmark training sets while the bottom half shows zero-shot performance.
FT denotes fine-tuned models.

Method LLM Size Charades-STA QVHighlight

mIoU R@1 (IoU=0.3) R@1 (IoU=0.5) R@1 (IoU=0.7) mAP HIT@1

QD-DETR (FT) [28] - - - 57.3 32.6 38.9 64.2
UnLoc-L (FT) [49] - - - 60.8 38.4 - -
HawkEye (FT) [44] 7B 49.3 72.5 58.3 28.8 - -
TimeChat (FT) [37] 7B - - 46.7 23.7 21.7 37.9
VideoChat-T (FT) [51] 7B - 79.4 67.1 43.0 27.0 55.3

MovieChat [40] 7B - 8.8 2.9 1.3 11.7 16.1
GroundingGPT [25] 7B - - 29.6 11.9 - -
VTimeLLM [13] 7B 31.2 51.0 27.5 11.4 - -
HawkEye [44] 7B 33.7 50.6 31.4 14.5 - -
TimeChat [37] 7B - - 32.2 13.4 14.5 23.9
Trace [11] 7B - - 40.3 19.4 26.8 42.7
ChatVTG [32] 7B - 52.7 33.0 15.9 - -
VideoChat2 [23] 7B 34.9 9.6 3.4 1.4 13.4 18.6
Momentor [31] 7B 28.5 42.6 26.6 11.6 7.6 -
Grounded-VideoLLM [43] 4B 36.8 54.2 36.4 19.7 36.8 46.2

Qwen-VL-2.5 [1] 3B 33.1 52.4 34.3 12.5 42.1 44.8
TEMPURA (Ours) 3B 39.2 (+6.3) 63.8 (+11.4) 39.3 (+5.0) 15.0 (+2.5) 48.3 (+6.2) 51.7 (+6.9)

Video Temporal Grounding. Video temporal grounding aims to localize specific moments in a video
based on a language query. We evaluate our model on Charades-STA [9] using mean Intersection
over Union (mIoU) and Recall@1 at different IoU thresholds following previous work [43], assessing
both temporal localization accuracy and recall. Our model is capable of providing more granular
descriptions of videos, including more detailed content descriptions and greater sensitivity to temporal
intervals. In the example shown in Figure 5, given the same prompt, our model not only expresses
the same meaning but also provides more detailed grounding and descriptions for each step. We
also analyzed performance on Youcook2[58]. Compared to the baseline model’s average of 15.53
events per video, our model achieves 27.49 events, demonstrating significantly more detailed temporal
understanding and description capabilities.

Highlight Detection. The goal of highlight detection is to identify relevant time windows within
a video and predict saliency scores based on a given language query. We evaluate our model on
QVHighlights [20], reporting mean Average Precision (mAP) and HIT@1 as evaluation metrics. HIT@1
measures whether the highest-ranked retrieved time window aligns with the ground truth. Unlike
video temporal grounding, which focuses on localizing a single moment, highlight detection aims to
retrieve all relevant time windows corresponding to the query.

Table 2 shows that TEMPURA improves the baseline model by 6.3 mIoU, and either matches or
exceeds the state-of-the-art in video temporal grounding—all without any target-task fine-tuning and
with a smaller model size. In contrast to previous approaches that rely on various forms of instruction
tuning data for video temporal grounding [13, 25, 37, 43, 44], our method trains the model to segment
a video into a series of events, infer their relationships, and describe them in detail. As a result,
TEMPURA not only eliminates the need for extra components such as time prediction models [11],
temporal encoding tokens [43], and video-specific vision encoders [37], but also outperforms methods
like [32] that are optimized for generating dense captions and extracting time windows from model
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Table 3: TEMPURA Training Stages S1: Masked Event Prediction. S2 Event Segmentation and Temporal
Captioning.

Training Stages mIoU R@1 (IoU=0.3) R@1 (IoU=0.5)

S2 38.4 59.1 32.8
S2 → S1 34.0 55.6 32.6
S1 → S2 39.2 63.9 39.3

BaseLine

OurModel

fry the chicken in oil until golden brown.(46s – 168s)

the breaded chicken pieces 
are placed in a pan with oil. 
(105s – 124s)

the chicken pieces are cooked 
in the pan.(125s – 140s)

the chicken pieces are dusted 
with flour again..(141s – 160s)

Fig. 5: Our model can segment videos into more fine-grained events, capturing subtle transitions and short-
duration activities. In contrast, the baseline model (QwenVL2.5) tends to generate coarser segments. This
difference suggests that our approach is more adept at recognizing and differentiating fine-grained patterns
within video sequences, leading to detailed and structured event representation.

outputs. TEMPURA also enhances the performance in highlight detection by 6.9 HIT@1 over the
baseline model and surpasses other methods. The superior performance of our model in two tasks
demonstrates that the model’s learned fine-grained temporal understanding ability trained with our
TEMPURA pipeline and the data curated in VER can be easily adapted in downstream video temporal
understanding tasks without fine-tuning on the benchmark datasets.

5.3. Ablation Study

To study the effectiveness of each component in TEMPURA, we split our ablation analysis into three
parts and report mIoU and R@1 (IoU=0.5) on Charades-STA.

TEMPURA Training Stage. TEMPURA uses masked event prediction as the first training stage,
and video dense captioning as the second training stage. As shown in Table 3, we found that using
mask event prediction as the pre-training stage before dense captioning will enhance the model’s
temporal understanding of videos. On the contrary, training the model first on dense captioning and
continuing to fine-tune the model on the masked event prediction tasks would not improve the model
to follow temporal grounding instructions since the model was not explicitly trained to segment video
into fine-grained events. Nonetheless, we can still observe the model starts to extract facts around
the masked video time windows and generate longer reasoning steps to predict plausible infill as
shown in the supplementary material. We compare our model’s generated masked event prediction
and reasoning steps with the baseline model in the supplementary material.
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Table 4: Temporal Encoding Scheme. We found adding visual timestamp on sampled video frames provide the
most accurate and robust way to encode time. V.T. means adding visual timestamp to the images. T.M. means
using temporal MRoPE for the encoding. T.I. means appending time instruction in the prompt.

V.T. T.M. T.I. mIoU R@1 (IoU=0.3) R@1 (IoU=0.5)

✓ ✓ 25.6 33.1 16.7
✓ ✓ ✓ 26.7 (+1.1) 39.0 (+5.9) 22.1 (+4.4)
✓ 38.4 59.1 32.8
✓ ✓ 38.9 (+0.5) 64.2 (+5.1) 38.5 (+5.7)

Table 5: Dynamic Scene and Relevant Segment Filtering. D.S.: Dynamic Scene Filtering, T.R.: Relevant Segment
Filtering

Data Filtering mIoU R@1 (IoU=0.3) R@1 (IoU=0.5)

No D.S. 34.8 51.3 27.4
D.S. 38.7 (+3.9) 63.7 (+12.4) 38.3 (+10.9)

No T.R. 33.0 47.3 28.3
T.R. 37.5 (+4.5) 57.1 (+9.8) 34.8 (+6.5)

Temporal Encoding Scheme. In Table 4, we compared three different temporal encoding schemes
during model training: using absolute temporal encoding in M-RoPE, appending time instruction
ahead of user queries, and adding visual timestamps. We found that adding visual timestamps
provides the best-grounded captions with the timestamps. Since our model was pre-trained with a
large amount of OCR data, and the LLM is good at understanding structured information, overlaying
the visual timestamp on each sampled video frame will naturally allow the model to understand
videos’ progression. In addition, we show that the baseline model Qwen2.5-VL tends to misalign
the description with the correct timestamps. On the contrary, our model’s temporal grounding and
captioning are robust when the video gets longer.

Dynamic Scene and Relevant Event Filtering. Our TEMPURA model is learned to partition the
videos into non-overlapping segments and describe the segments focusing on the video progression.
We found that fine-tuning the base model without filtering out static scenes would weaken the model’s
grounding and captioning ability. Static scenes contain redundant video frames and fewer semantics,
and training on such video-text pairs will make the model leans to generate shorter descriptions.
During the masked event prediction stage, it is crucial to filter out videos with non-relevant events.
Since we train the model to predict possible events in masked time windows, the model learns to
build casual bidirectional thinking around past and future video content. Training with masked event
data generated from videos with non-relevant events weakens the model’s temporal understanding
as shown in Table 5.

6. Conclusions

In this work, we present TEMPURA, a two-stage training framework to enhance video LMM’s tempo-
ral understanding by intergrating coarse visual extraction with deep causal reasoning. Furthermore,
we proposed VER, a large-scale video event reasoning dataset that aims to enhance the temporal
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understanding ability of video LMMs. After trained on VER, our model substantially outperforms
strong baseline model Qwen2.5-VL on multiple temporal understanding benchmarks for temporal
grounding and highlight detection tasks. Meanwhile, our ablation studies reveal that the integration
of masked event prediction and follow-up fine-grained segmentation further improve video LMM’s
performance on video temporal understanding.
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Supplementary Material
The supplementary material is structured as follows:

• VER data creation pipeline and statistics in Section S1.

• Implementation details in Section S2.

• Qualitative analysis in Section S3.

S1. VER Data Creation Pipeline and Statistics

After data filtering, we uniformly sampled video frames and arranged them into frame sequence
images. The example input to GPT4-o is shown on the right of Figure S1. We added the timestamp
in each image, and combined multiple frame sequence images to obtain a grid-formatted composite
image as the input. These inputs were first temporally segmented by GPT4-o, and we consider these
segments as events. Based on the generated time segments, GPT4-o then generated the descriptions of
these events separately. Next, we used these temporally aligned event descriptions to construct our
masked event prediction data. To create this dataset, we first need to filter out data with weak event
correlations. The bottom half of Figure S1 shows an example of the data pipeline described in Figure 4.
By inputting the event information into the model in text form, we have it determine whether each
correlation is logically valid. After filtering, we obtained 200K reasoning data from 500K dense video
captioning data.

Our dataset contains videos across 10 domains like travel, DIY, tech reviews, etc. (Figure S2). The
average duration and the length of the caption also varied between different domains (Figure S3).
Figure S4 presents the percentage of videos with temporal relevance in each category.

S2. Implementation Details

We fully fine-tuned the 3B model from Qwen2.5-VL checkpoint on two tasks, masked event prediction
and event segmentation and temporal captioning, in two sequential stages:

• Stage 1: We trained the model using masked event prediction with supervised fine-tuning (SFT)
on our VER dataset.

• Stage 2: We fine-tuned the checkpoints from Stage 1 on the event segmentation and temporal
captioning task, utilizing our VER dataset to enhance temporal event understanding.

Our training configuration includes:

• Global batch size: 64, with 2 samples per device across 8 devices, resulting in gradient accumula-
tion steps of 4

• Learning rates: 1 × 10−5 for the LLM and MLP adapter; 2 × 10−6 for the vision encoder
• Weight decay: 0.1 to prevent overfitting
• Warm-up ratio: 0.03 in the cosine learning rate schedule
• Gradient checkpoint: Enabled to reduce memory consumption
• Liger kernel integration [12]: Significantly reduced memory overhead during full fine-tuning,

making it feasible to process long video input frames efficiently.

During training, we adopted a uniform sampling rate at 1 frame per second (FPS) and fixed every
sampled frame to 320 × 180 pixels.
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S3. Qualitative Analysis

Figure S5 and S6 compare the performance of Qwen2.5-VL-3B (our baseline), Grounded-Video-LLM-
Phi, VideoQA, and TEMPURA (our proposed model) on long video temporal grounding tasks. The
red text highlights errors in timestamp predictions when other models segment videos into fine-
grained events and identify their start and end times. While other models often struggle, especially
toward the end of long videos, TEMPURA consistently segments events accurately and assigns precise
timestamps. For instance, the green text shows that TEMPURA correctly identifies a person filling
and wrapping spring rolls from 161.00 to 183.00 seconds, followed by placing them into oil for frying
from 185.00 to 205.00 seconds. Additionally, TEMPURA has better performance in producing more
fine-grained event captions, as shown by the larger number of event captions produced by our model.

Figure S7 compares the performance of Qwen2.5-VL-3B (our baseline), Grounded-Video-LLM-
Phi, VideoQA, and TEMPURA (our proposed model) on fine-grained video segmentation. The red
highlights indicate errors in timestamp predictions and the failure of other models to produce detailed
event captions, even in shorter videos. In contrast, TEMPURA demonstrates better performance,
as indicated by the green text, by producing more accurate timestamps, fine-grained events, and
descriptive event captions.
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Response: Decision: True

Step-By-Step Reasoning:

1. Cooking Steps for the Main Dish (28.0 to 70.0 seconds)

o The preparation of Au Jus and sauce happens first, as they are necessary 

components.

o Bread is heated just before sandwich assembly, maintaining freshness.

o The sandwich is assembled after all ingredients are ready, forming a logical 

sequence.

2. Completing the Dish and Serving It (71.0 to 106.0 seconds)

o Dipping beef in Au Jus before placing it in the sandwich is an essential step.

o Pouring extra Au Jus into a bowl for serving follows naturally.

o The final presentation of the dish is shown last, aligning with typical 

cooking videos.

3. Ending the Video with Standard Elements (107.0 to 120.0 seconds)

o The channel name is displayed again for branding.

o The video ends with a call to subscribe, following standard content 

structuring.

Each event follows a logically relevant sequence, making the videos temporally 

coherent.

Prompt: Based on your temporal causal understanding of the event captions:

1. 28.0 - 35.0s: The video shows the preparation of Au Jus in a saucepan.

2. 36.0 - 58.0s: The scene shows a person mixing a sauce in a small bowl.

3. 59.0 - 61.0s: The video shows a person heating bread in the oven.

4. 62.0 - 70.0s: <mask/>

5. 71.0 - 90.0s: <mask/>

6. 91.0 - 98.0s: The video shows a person pouring Au Jus into a small bowl.

7. 99.0 - 106.0s: The video shows the final presentation of the beef dip 

sandwich with fries.

Predict the likely events occurring during the masked time windows, 

<mask/>, while ensuring a logical temporal progression between all event 

captions. Provide a step-by-step reasoning for each predicted event.

Response: 

Event: Beef dip sandwich assembly

Start: 62.0

End: 92.0

Description: The host assembles the beef dip sandwich by layering the beef onto the 

toasted bread, adding cheese, and plating it with fries before preparing the serving dish.

Reasoning:

1. The previous event (36.0 to 61.0) involveds mixing a sauce and heating bread in the 

oven, which are preparatory steps for assembling the sandwich.

2. The next event (91.0 to 106.0) involves pouring Au Jus into a bowl and presenting the 

final dish, which suggests that the sandwich must have been fully assembled before 

this step.

3. Logically, the missing event should include the assembly of the beef dip sandwich, 

where the beef is placed onto the toasted bread, cheese or condiments may be 

added, and the dish is plated for serving.

Prompt: Read the following video event captions carefully: 

1. 28.0 - 35.0s: The video shows the preparation of Au Jus in a saucepan.

2. 36.0 - 58.0s: The scene shows a person mixing a sauce in a small bowl.

3. 59.0 - 61.0s: The video shows a person heating bread in the oven.

4. 62.0 - 70.0s: The video shows a person assembling the beef dip 

sandwich.

5. 71.0 - 90.0s: The video shows a person dipping beef slices in Au Jus 

and placing them in the sandwich.

6. 91.0 - 98.0s: The video shows a person pouring Au Jus into a small 

bowl.

7. 99.0 - 106.0s: The video shows the final presentation of the beef dip 

sandwich with fries.

Think step by step about how each event influences the next one. If the 

events are related, output "True". Otherwise, output "False". 

List step-by-step reasoning for decision.

GPT4-o

GPT4-o

Video is just for reference, 
only texts are input to GPT4-o

Fig. S1: Our mask event prediction data example and generation process.
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Vlogs & Misc.

Entertainment

& Pop
17%

DIY & Creative

Arts

5%

Food, Home &

Lifestyle
16%

9%

Educational & How-To Content

8%

News

9% Tech Reviews

2%

Sports &
Fitness

17%

Travel &

Outdoor

Adventures

8%

Science &

Technology
9%

Fig. S2: Video Class Distribution

Fig. S3: Event Caption Distribution

Fig. S4: Video Frame Temporal Relevance Distribution
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1. From 14.0 to 31.0 seconds, mix corn flour and plain flour in a bowl.

2. From 32.0 to 65.0 seconds, add water and salt to the mixture and stir until 

smooth.

3. From 78.0 to 119.0 seconds, add oil, ginger, green bell peppers, onions, carrots, 

and cabbage to the pan and stir.

4. From 120.0 to 125.0 seconds, add salt and black pepper to taste.

5. From 126.0 to 165.0 seconds, place the filling on the wrapper and roll it up.

6. From 166.0 to 185.0 seconds, fry the spring rolls in oil until golden brown.

Qwen2.5-VL-3B

Segment the video into a sequence of non-overlapping events by identifying the start 

and end times of each event. Ensure that all video frames are covered 

chronologically. Each event should be described in detail. Please follow the format 

below:

"From <start time1> to <end time1>, <detailed description1>."

"From <start time2> to <end time2>, <detailed description2>."

(Continue for all identified events)

1. From 0 to 13 seconds, the video starts with a list of ingredients for making spring 

rolls. 

2. From 13 to 31 seconds, the woman adds the ingredients to a bowl and mixes them 

together. 

3. From 31 to 57 seconds, she adds the mixture to a pan and cooks it on the stove. 

4. From 57 to 84 seconds, the woman adds oil to the pan and cooks the mixture. 

5. From 84 to 102 seconds, she adds the spring onions to the pan. 

6. From 102 to 120 seconds, she adds the garlic to the pan. 

7. From 120 to 141 seconds, she adds the carrots and the green chili pepper to the pan. 

8. From 141 to 161 seconds, she adds the cabbage to the pan. 

9. From 161 to 181 seconds, she adds the salt and pepper to the pan. 

10. From 181 to 194 seconds, she rolls the spring rolls up and places them on a plate. 

11. From 194 to 223 seconds, the woman adds the spring onions to the spring rolls. 

12. From 223 to 245 seconds, she rolls the spring rolls up and places them on the plate. 

13. From 245 to 263 seconds, the woman cooks the spring rolls in the pan. 

14.From 263 to 299 seconds, the woman takes the spring rolls out of the pan and 

places them on a plate.

Grounded

Video LLM-

Meta-Llama-3-

8B-Instruct

Fig. S5: Comparison of long video temporal grounding responses on a cooking tutorial video, generated by
baseline models: Qwen2.5-VL-3B and Grounded Video LLM-Meta-Llama-3-8B-Instruct. Each of the baseline
models are prompted to segment videos and describe each of the video segments in detail with correct start
and end times. The text highlighted in red indicates incorrect determination of start and end times for frame
descriptions.
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TEMPURA
1.  From 0.5 to 4.5 seconds, the video begins with an introduction to the recipe for 

vegetable spring rolls by Archana's Kitchen. 

2. From 5.5 to 12.5 seconds, the ingredients for the spring roll wrapper are listed: 1/2 cup 

plain flour, 1/4 cup cornflour, 3/4 cup water or more to make a smooth batter, and a 

pinch of salt.

3. From 13.5 to 20.5 seconds, the ingredients are measured and mixed in a bowl.

4. From 21.5 to 27.5 seconds, water is added to the mixture and stirred until it forms a 

smooth batter.

5. From 28.5 to 39.5 seconds, the batter is left to rest while other ingredients are 

prepared.

6. From 40.5 to 50.5 seconds, oil is heated in a pan and the batter is poured into the 

pan to form a pancake-like shape.

7. From 51.5 to 69.5 seconds, the pancake is flipped over to cook the other side.

8. From 70.5 to 80.5 seconds, the ingredients for the spring rolls are listed: 10 to 12 

spring roll wrappers, shredded cabbage, shredded carrots, chopped green bell 

peppers, grated ginger, salt, black pepper, flour paste, and oil for deep frying.

9. From 81.5 to 111.5 seconds, the vegetables are cooked in a pot with oil, ginger, and 

other seasonings.

10. From 112.5 to 121.5 seconds, the cooked vegetables are mixed with flour paste to 

create a dough-like consistency.

11. From 122.5 to 131.5 seconds, the dough is prepared for rolling into spring rolls.

12. From 132.5 to 183.5 seconds, the dough is rolled into spring rolls and filled with the 

cooked vegetable mixture.

13. From 184.5 to 204.5 seconds, the filled spring rolls are deep-fried until golden 

brown.

14. From 205.5 to 218.5 seconds, the finished spring rolls are served with dipping sauce.

1. From 0 seconds, intro. 

2. From 18 seconds, ingredients. 

3. From 35 seconds, mixing the ingredients. 

4. From 57 seconds, cooking the pancake. 

5. From 111 seconds, sauteing the vegetables. 

6. From 164 seconds, making the sauce.

7. From 184 seconds, rolling the pancake. 

8. From 207 seconds, adding the vegetables. 

9. From 245 seconds, frying the spring roll. 

10. From 283 seconds, outro.

Grounded-

Video-LLM-Phi

1. From 0 seconds, intro

2. From 18 seconds, ingredients. 

3. From 37 seconds, mixing ingredients.

4. From 58 seconds, cooking pancake. 

5. From 112 seconds, sauteing vegetables.

6. From 166 seconds, making sauce. 

7. From 184 seconds, rolling out dough. 

8. From 208 seconds, filling dough. 

9. From 255 seconds, frying spring roll. 

10. From 283 seconds, finished result.

VideoQA

Fig. S6: Comparison of long video temporal grounding responses on a cooking tutorial video, generated by
TEMPURA (our model) and baseline models: Grounded-Video-LLM-Phi and VideoQA. Each of the models are
prompted to segment videos and describe each of the video segments in detail with correct start and end times.
The text highlighted in red indicates incorrect determination of start/end times and video segment descriptions.
The text in green indicates correct determination of start/end times and and video segment descriptions.
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Segment the video into a sequence of non-overlapping fine-grained events by identifying the 

start and end times of each event in seconds. Ensure that all video frames are covered 

chronologically. Each event should be described in detail, capturing the specific actions taking 

place, the objects involved, and any scene transitions. Follow the format below:

Format:

"From <start time1> to <end time1>, <detailed description 1>."

"From <start time2> to <end time2>, <detailed description 2>."

(Continue for all identified events)

1. From 0.0 to 3.8 seconds, a person is standing in front of a window, looking outside.
Qwen2.5-VL-3B

1. From 0 to 46 seconds, a man is looking out of a window. 

2. From 46 to 94 seconds, he turns around and looks back in the window.

3. From 94 to 112 seconds, he bends down and picks up a vacuum cleaner.

4. From 112 to 299 seconds, he vacuums the floor.

Grounded-Video-LLM-

Meta-Llama-3-8B-Instruct

1. From 0 seconds, intro. 

2. From 18 seconds, showing vacuum. 

3. From 88 seconds, explaining vacuum. 

4. From 139 seconds, demonstrating vacuum. 

5. From 269 seconds, outro. 

Grounded-Video-LLM-

Phi

TEMPURA

1. From 0.5 to 6.5 seconds, a person wearing a hoodie is seen standing near a window, adjusting 

the blinds.​ 

2. From 7.5 to 13.5 seconds, the person moves closer to the vacuum cleaner, preparing to use it.

3. From 14.5 to 20.5 seconds, the person starts using the vacuum cleaner, moving it around the 

room.​

4. From 21.5 to 27.5 seconds, the person continues to use the vacuum cleaner, cleaning different 

areas of the room.​

5. From 28.5 to 29.5 seconds, the person finishes using the vacuum cleaner and stands near it.​

1. From 0 seconds, intro. 

2. From 19 seconds, showing the vacuum.

3. From 88 seconds, explaining the vacuum.

4. From 145 seconds, demonstrating the vacuum. 

5. From 250 seconds, outro.

VideoQA

Fig. S7: Comparing TEMPURA (our model) and other baseline model (Qwen2-5-VL-3B, Grounded-Video-LLM-
Meta-Llama-3-8B-Instruct, Grounded-Video-LLM-Phi, and VideoQA) abilities to generate detailed descriptions
on fine-grained events on short videos. Each model is prompted to segment the video into fine-grained events
and describe the events in detail with correct start/end timestamps. Red text indicates incorrect responses with
incorrect start/end timestamps and/or poor descriptions of the event segment.
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